1.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
2.Salvianolic Acid B Exerts Antiphotoaging Effect on Ultraviolet B-Irradiated Human Keratinocytes by Alleviating Oxidative Stress via SIRT1 Protein.
Qiao-Ju ZHANG ; Xi LUO ; Yu-Wen ZHENG ; Jun-Qiao ZHENG ; Xin-Ying WU ; Shu-Mei WANG ; Jun SHI
Chinese journal of integrative medicine 2025;31(11):1021-1028
OBJECTIVE:
To explore the anti-photoaging properties of salvianolic acid B (Sal B).
METHODS:
The optimal photoaging model of human immortalized keratinocytes (HaCaT cells) were constructed by expose to ultraviolet B (UVB) radiation. The cells were divided into control, model and different concentrations of Sal B groups. Cell viability was measured via cell counting kit-8. Subsequently, the levels of oxidative stress, including reactive oxygen species (ROS), hydroxyproline (Hyp), catalase (CAT), and glutathione peroxidase (GSH-Px) were detected using the relevant kits. Silent information regulator 1 (SIRT1) protein level was detected using Western blot. The binding pattern of Sal B and SIRT1 was determined via molecular docking.
RESULTS:
Sal B significantly increased the viability of UVB-irradiated HaCaT cells (P<0.05 or P<0.01). Sal B effectively scavenged the accumulation of ROS induced by UVB (P<0.05 or P<0.01). In addition, Sal B modulated oxidative stress by increasing the intracellular concentrations of Hyp and CAT and the activity of GSH-Px (P<0.05 or P<0.01). The Western blot results revealed a substantial increase in SIRT1 protein levels following Sal B administration (P<0.05). Moreover, Sal B exhibited good binding affinity toward SIRT1, with a docking energy of -7.5 kCal/mol.
CONCLUSION
Sal B could improve the repair of photodamaged cells by alleviating cellular oxidative stress and regulating the expression of SIRT1 protein.
Humans
;
Sirtuin 1/metabolism*
;
Ultraviolet Rays
;
Oxidative Stress/radiation effects*
;
Keratinocytes/metabolism*
;
Molecular Docking Simulation
;
Benzofurans/pharmacology*
;
Skin Aging/radiation effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Survival/radiation effects*
;
HaCaT Cells
;
Hydroxyproline/metabolism*
;
Glutathione Peroxidase/metabolism*
;
Catalase/metabolism*
;
Depsides
3.Extremely low frequency electromagnetic radiation enhanced energy metabolism and induced oxidative stress in Caenorhabditis elegans.
Yong-Yan SUN ; Ya-Hong WANG ; Zhi-Hui LI ; Zhen-Hua SHI ; Yan-Yan LIAO ; Chao TANG ; Peng CAI
Acta Physiologica Sinica 2019;71(3):388-394
The aim of this study was to determine the effects of extremely low frequency electromagnetic field (ELF-EMF) on energy metabolism and oxidative stress in Caenorhabditis elegans (C. elegans). Worms in three adult stages (young adult stage, egg-laying stage and peak egg-laying stage) were investigated under 50 Hz, 3 mT ELF-EMF exposure. ATP levels, ATP synthase activity in vivo, reactive oxygen species (ROS) content, and changes of total antioxidant capacity (TAC) were detected, and worms' oxidative stress responses were also evaluated under ELF-EMF exposure. The results showed that ATP levels were significantly increased under this ELF-EMF exposure, and mitochondrial ATP synthase activity was upregulated simultaneously. In young adult stage, worms' ROS level was significantly elevated, together with upregulated TAC but with a decreased ROS-TAC score indicated by principal component analysis. ROS level and TAC of worms had no significant changes in egg-laying and peak egg-laying stages. Based on these results, we concluded that ELF-EMF can enhance worm energy metabolism and elicit oxidative stress, mainly manifesting as ATP and ROS level elevation together with ATP synthase upregulation and ROS-TAC score decrease in young adult C. elegans.
Adenosine Triphosphate
;
metabolism
;
Animals
;
Caenorhabditis elegans
;
radiation effects
;
Electromagnetic Radiation
;
Energy Metabolism
;
Mitochondrial Proton-Translocating ATPases
;
metabolism
;
Oxidative Stress
;
Reactive Oxygen Species
;
analysis
4.Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7.
Hyung Seo HWANG ; Joong Hyun SHIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):203-209
Caesalpinia sappan L., belonging to the family Leguminosae, is a medicinal plant that is distributed in Southeast Asia. The dried heartwood of this plant is used as a traditional ingredient of food, red dyes, and folk medicines in the treatment of diarrhea, dysentery, tuberculosis, skin infections, and inflammation. Brazilin is the major active compound, which has exhibited various pharmacological effects, including anti-platelet activity, anti-hepatotoxicity, induction of immunological tolerance, and anti-inflammatory and antioxidant activities. The present study aimed to evaluate the antioxidant activity and expression of antioxidant enzymes of C. sappan L. extract and its major compound, brazilin, in human epidermal keratinocytes exposed to UVA irradiation. Our results indicated that C. sappan L. extract reduced UVA-induced HO production via GPX7 activation. Moreover, brazilin exhibited antioxidant effects that were similar to those of C. sappan L. via glutathione peroxidase 7 (GPX7), suggesting that C. sappan L. extract and its natural compound represent potential treatments for oxidative stress-induced photoaging of skin.
Antioxidants
;
pharmacology
;
Benzopyrans
;
pharmacology
;
Caesalpinia
;
chemistry
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
Keratinocytes
;
cytology
;
drug effects
;
enzymology
;
radiation effects
;
Oxidative Stress
;
drug effects
;
radiation effects
;
Peroxidases
;
genetics
;
metabolism
;
Plant Extracts
;
pharmacology
;
Protective Agents
;
pharmacology
;
Ultraviolet Rays
5.Protective effect of astaxanthin against epididymal oxidative damagein rats with ornidazole-induced oligoasthenozoospermia.
Wei LIU ; Xiao-Fang KANG ; Guo-Wei ZHANG ; Hong-Cai CAI ; Kai-Qiang LI ; Ling-Ling WANG ; Xue-Jun SHANG
National Journal of Andrology 2017;23(3):206-211
Objective:
To investigate the improving effect of astaxanthin (AST) on the sperm quality of rats with ornidazole (ORN)-induced oligoasthenozoospermiaand its action mechanism.
METHODS:
Forty adult male SD rats were equally randomized into groups A (solvent control), B (low-dose ORN [400 mg/(kg·d)]), C (high-dose ORN [800 mg/(kg·d)]), D (low-dose ORN [400 mg/(kg·d)] + AST [20 mg/(kg·d)]), and E (high-dose ORN [800 mg/(kg·d)] + AST [20 mg/(kg·d)]), all treated intragastrically for3 weeks.After treatment, the epididymal tails ononeside was taken for determination of sperm concentration and activity, and the epididymideson the other side harvested for measurement of the activities of GSH-Px, GR, CAT and SOD and the MDA contentin the homogenate.
RESULTS:
Compared with group A, sperm motilityin the epididymal tail andGSH-Px and SOD activities in theepididymiswere markedly decreased while the MDAcontent significantlyincreased in group B (P<0.05), spermmotility and concentrationin the epididymal tail, testisindex, and the activities of GSH-Px, GR, CAT and SOD in the epididymis were remarkably reduced while theMDA contentsignificantly increased in group C(P<0.05). In comparison with group B, group D showed markedly increased sperm motility ([45.3±8.7]% vs [66.3±8.9]%, P<0.05) in the epididymal tail and SOD activity in the epididymis ([116.7±25.3] U/mg prot vs [146.1±23.8] U/mg prot, P<0.05), decreased MDA content([1.68±0.45] nmol/mg prot vs [1.19±0.42] nmol/mg prot, P<0.05).Compared with group C, group Eexhibited significant increases in the weight gained ([89.0±9.5] vs [99.9±4.1] %, P<0.05) and sperm motility ([17.9±3.5]% vs [27.3±5.3] %, P<0.05) but a decrease in the content of MDA ([2.03±0.30] nmol/mg prot vs [1.52±0.41] nmol/mg prot, P<0.05).
CONCLUSIONS
AST can improve spermquality in rats with ORN-inducedoligoasthenozoospermia, which may be associated with its enhancing effect on the antioxidant capacity of the epididymis.
Animals
;
Antioxidants
;
pharmacology
;
Asthenozoospermia
;
prevention & control
;
Epididymis
;
drug effects
;
metabolism
;
Male
;
Oligospermia
;
prevention & control
;
Ornidazole
;
Oxidative Stress
;
Protective Agents
;
pharmacology
;
Radiation-Sensitizing Agents
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Sperm Count
;
Sperm Motility
;
Spermatozoa
;
drug effects
;
metabolism
;
Xanthophylls
;
pharmacology
6.Heijiangdan ointment relieves oxidative stress from radiation dermatitis induced by (60)Co γ-ray in mice.
Lin YANG ; Ming-wei YU ; Xiao-min WANG ; Yi ZHANG ; Guo-wang YANG ; Xiao-qin LUO ; Rui-yun PENG ; Ya-bing GAO ; Li ZHAO ; Li-feng WANG
Chinese journal of integrative medicine 2016;22(2):110-115
OBJECTIVETo investigate the effects of Heijiangdan Ointment ( HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.
METHODSFemale Wistar mice with grade 4 radiation dermatitis induced by (60)Co γ-rays were randomly divided into four groups (n=12 per group); the HJD-treated, recombinant human epidermal growth factor (rhEGF)-treated, Trolox-treated, and untreated groups, along with a negative control group. On the 11th and 21st days after treatment, 6 mice in each group were chosen for evaluation. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were detected using spectrophotometric methods. The fibroblast mitochondria were observed by transmission electron microscopy (TEM). The expressions of fibroblast growth factor 2 (FGF-2) and transforming growth factor β1 (TGF-β1) were analyzed by western blot.
RESULTSCompared with the untreated group, the levels of SOD, MDA and LDH, on the 11th and 21st days after treatment showed significant difference (P<0.05). TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured, while in the HJD group, the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed. The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group (P<0.05). After treatment, the expression of FGF-2, rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group (P<0.05), or compared with the negative control group (P<0.05). The expression of TGF-β1 showed significant difference between untreated and negative control groups (P<0.05). HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups (P<0.05).
CONCLUSIONHJD relieves oxidative stress-induced injury, increases the antioxidant activity, mitigates the fibroblast mitochondrial damage, up-regulates the expression of growth factor, and promotes mitochondrial repair in mice.
Animals ; Biological Products ; pharmacology ; therapeutic use ; Cell Proliferation ; drug effects ; radiation effects ; Cobalt Radioisotopes ; Dermatitis ; complications ; drug therapy ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Fibroblast Growth Factor 2 ; genetics ; metabolism ; Fibroblasts ; drug effects ; pathology ; radiation effects ; Gamma Rays ; Humans ; L-Lactate Dehydrogenase ; metabolism ; Malondialdehyde ; metabolism ; Mice ; Mitochondria ; drug effects ; metabolism ; radiation effects ; Ointments ; Oxidative Stress ; drug effects ; radiation effects ; Pharmaceutical Preparations ; Radiation Injuries ; complications ; drug therapy ; pathology ; Superoxide Dismutase ; metabolism ; Transforming Growth Factor beta1 ; genetics ; metabolism ; Up-Regulation ; drug effects ; radiation effects
7.Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes.
Hui-rong MA ; Xiao-hui CAO ; Xue-lian MA ; Jin-jin CHEN ; Jing-wei CHEN ; Hui YANG ; Yun-xiao LIU
National Journal of Andrology 2015;21(8):737-741
OBJECTIVETo observe the effect of Liuweidihuang Pills in relieving cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in the rat testis.
METHODSThirty adult male SD rats were equally randomized into a normal, a radiated, and a Liuweidihuang group, the animals in the latter two groups exposed to electromagnetic radiation of 900 MHz cellphone frequency 4 hours a day for 18 days. Meanwhile, the rats in the Liuweidihuang group were treated with the suspension of Liuweidihuang Pills at 1 ml/100 g body weight and the other rats intragastrically with the equal volume of purified water. Then all the rats were killed for observation of testicular histomorphology by routine HE staining, measurement of testicular malondialdehyde (MDA) and glutathione (GSH) levels by colorimetry, and determination of the expressions of bax and bcl-2 proteins in the testis tissue by immunohistochemistry.
RESULTSCompared with the normal controls, the radiated rats showed obviously loose structure, reduced layers of spermatocytes, and cavitation in the seminiferous tubules. Significant increases were observed in the MDA level (P < 0.01) and bax expression (P < 0.01) but decreases in the GSH level (P < 0.01) and bcl-2 expression (P < 0.01) in the testis issue of the radiated rats. In comparison with the radiated rats, those of the Liuweidihuang group exhibited nearly normal testicular structure, significantly lower MDA level (P < 0.05), bax expression (P < 0.01), and bcl-2 expression (P < 0.01).
CONCLUSIONLiuweidihuang Pills can improve cellphone electromagnetic radiation-induced histomorphological abnormality of the testis tissue and reduce its oxidative damage and cell apoptosis.
Animals ; Apoptosis ; drug effects ; radiation effects ; Body Weight ; drug effects ; radiation effects ; Cell Phone ; Drugs, Chinese Herbal ; pharmacology ; Electromagnetic Radiation ; Glutathione ; metabolism ; Male ; Malondialdehyde ; metabolism ; Oxidative Stress ; Radiation-Protective Agents ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Seminiferous Tubules ; drug effects ; radiation effects ; Spermatocytes ; drug effects ; metabolism ; radiation effects ; Staining and Labeling ; Testis ; drug effects ; metabolism ; pathology ; radiation effects
8.Impacts of exposure to 900 MHz mobile phone radiation on liver function in rats.
Hui-rong MA ; Zhi-hong MA ; Gui-ying WANG ; Cui-miao SONG ; Xue-lian MA ; Xiao-hui CAO ; Guo-hong ZHANG
Chinese Journal of Applied Physiology 2015;31(6):567-571
OBJECTIVETo study the impacts of exposure to electromagnetic radiation (EMR) on liver function in rats.
METHODSTwenty adult male Sprague-Dawley rats were randomly divided into normal group and radiated group. The rats in normal group were not radiated, those in radiated group were exposed to EMR 4 h/ d for 18 consecutive days. Rats were sacrificed immediately after the end of the experiment. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and those of malondialdehyde (MDA) and glutathione (GSH) in liver tissue were evaluated by colorimetric method. The liver histopathological changes were observed by hematoxylin and eosin staining and the protein expression of bax and bcl- 2 in liver tissue were detected by immunohistochemical method. Terminal-deoxynucleotidyl transferase mediated nick and labelling (TUNEL) method was used for analysis of apoptosis in liver.
RESULTSCompared with the normal rats, the serum levels of ALT and AST in the radiated group had no obvious changes (P>0.05), while the contents of MDA increased (P < 0.01) and those of GSH decreased (P < 0.01) in liver tissues. The histopathology examination showed diffuse hepatocyte swelling and vacuolation, small pieces and focal necrosis. The immunohistochemical results displayed that the expression of the bax protein was higher and that of bcl-2 protein was lower in radiated group. The hepatocyte apoptosis rates in radiated group was higher than that in normal group (all P < 0.01).
CONCLUSIONThe exposure to 900 MHz mobile phone 4 h/d for 18 days could induce the liver histological changes, which may be partly due to the apoptosis and oxidative stress induced in liver tissue by electromagnetic radiation.
Animals ; Apoptosis ; Cell Phone ; Electromagnetic Radiation ; Liver ; pathology ; radiation effects ; Male ; Oxidative Stress ; Proteomics ; Rats ; Rats, Sprague-Dawley ; Staining and Labeling
9.Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone.
Ya-ping LUO ; Hui-Rong MA ; Jing-Wei CHEN ; Jing-Jing LI ; Chun-xiang LI
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(5):575-580
OBJECTIVETo observe the effect of American Ginseng Capsule (AGC) on the liver oxidative injury and the Nrf2 protein expression in the liver tissue of rats exposed by 900 MHz cell phone electromagnetic radiation.
METHODSTotally 40 male SD rats were randomly divided into the normal control group, the model group, the Shuifei Jibin Capsule (SJC) group, and the AGC group,10 in each group. Rats in the normal control group were not irradiated. Rats in the rest three groups were exposed by imitated 900 MHz cellular phone for 4 h in 12 consecutive days. Meanwhile, rats in the SJC group and the AGC group were intragastrically administrated with suspension of SJC and AGC (1 mL/200 g body weight) respectively. Normal saline was administered to rats in the normal control group and the model group. The histolomorphological changes of the liver tissue were observed by HE staining. Contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX)were detected by colorimetry. The Nrf2 protein expression of hepatocytes was detected by immunohistochemical assay and Western blot.
RESULTSCompared with the normal control group, hepatocyte nucleus was atrophied or partially disappeared, the contents of liver MDA and Nrf2 protein obviously increased (P <0. 05, P <0. 01); contents of liver SOD and GSH decreased (P <0. 05) in the model group. Compared with the model group, karyopyknosis was obviously attenuated and approached to the normal level in the SJC group and the AGC group. The contents of liver MDA and Nrf2 protein expression decreased (P <0. 05), and the contents of liver SOD, GSH, and GSH-PX obviously increased (P < 0.05) in the SJC group. The contents of liver MDA and the Nrf2 protein expression decreased (P < 0.05), and contents of SOD and GSH obviously increased in the AGC group (P <0.01, P <0.05).
CONCLUSIONSThe electromagnetic radiation induced by 900 MHz cell phone could affect the expression of Nrf2 protein, induce oxidative injury, and induce abnormal morphology of liver cells. SJC and AGC could promote the morphological recovery of the liver cells. Its mechanism might be related to affecting the expression of Nrf2 protein and attenuating oxidative damage of liver cells.
Animals ; Cell Phone ; Electromagnetic Radiation ; Glutathione Peroxidase ; metabolism ; Hepatocytes ; metabolism ; Liver ; Male ; NF-E2-Related Factor 2 ; metabolism ; Oxidative Stress ; drug effects ; Panax ; Plant Extracts ; pharmacology ; Rats ; Superoxide Dismutase ; metabolism
10.The Chinese medicine nutrient diet intervention prevent against the neurologic damage induce by EMF irradiation in rat hippocampus.
Qian-Fen GONG ; Xue-Sen YANG ; Ling TU ; Guang-Bin ZHANG ; Zheng-Ping YU
Chinese Journal of Applied Physiology 2013;29(4):346-350
OBJECTIVETo observe the neurologic damage in rat hippocampus after electromagnetic field (EMF) acute or chronic irradiation and research the protective effects of Chinese medicine diet (CMD) which comprised ferulic acid, ginsenoside, astragalus polysaccharide and rhodiola sachalinensis.
METHODSEighty rats were divided into ten groups (n = 8): normal diet with shame irradiation group (NS), normal diet with chronic irradiation group (NCI), three groups of normal diet with acute irradiation after 3 h, 24 h, 72 h (NAI), Chinese medicine diet with shame irradiation group (CS), Chinese medicine diet with chronic irradiation group (CCI), three groups of Chinese medicine diet with acute irradiation after 3 h, 24 h, 72 h (CAI). The chronic EMF irradiation were performed by electromagnetic wave at 15 W/cm2 for 20 min everyday for 8 weeks continuously. The acute EMF irradiation were performed by electromagnetic wave at 65 W/cm2 for 20 min after feeding with CMD for 8 weeks. The learning and memory were evaluated by Morris water maze before/after electromagnetic wave irradiation. The apoptotic cells in hippocampus was detected by Tunel staining. The peroxidation damage of EMF and the protective effect of CMD intervention were assayed by measuring superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and reactive oxygen species (ROS).
RESULTSThe acute and chronic EMF irradiation disturbed the ability of learning and memory significantly (P < 0.05), CMD intervention markedly antagonized this effect. The apoptotic cells in hippocampus increased evidently after EMF irradiation (P < 0.05), but CMD intervention reduced the apoptotic cells. The acute and chronic EMF irradiation induced the oxidative stress by down-regulating SOD activity, GSH-Px activity, ROS inhibiting and up-regulating the content of MDA obviously (P < 0.05), and CMD intervention reduced peroxidation damage significantly (P < 0.05).
CONCLUSIONThe acute and chronic EMF irradiation could initiate neurologic damage in hippocampus. CMD intervention has protective effect on the impaired learning and memory, the neuron apoptosis, the peroxidation damage induced by EMF irradiation. CMD intervention plays a significant protective role in antagonizing neurologic damage in the later stage of acute irradiation and chronic irradiation.
Animals ; Apoptosis ; Drugs, Chinese Herbal ; therapeutic use ; Electromagnetic Fields ; adverse effects ; Female ; Hippocampus ; radiation effects ; Male ; Oxidation-Reduction ; Oxidative Stress ; Phytotherapy ; Radiation Injuries, Experimental ; drug therapy ; Rats ; Reactive Oxygen Species

Result Analysis
Print
Save
E-mail