1.Procine recombinant NK-lysin inhibits hepatocellular carcinoma metastasis by downregulating FKBP3 and inhibiting oxidative phosphorylation and glycolysis: a proteomic analysis.
Yifan FAN ; Zhiwei FENG ; Kuohai FAN ; Wei YIN ; Na SUN ; Panpan SUN ; Yaogui SUN ; Hongquan LI
Journal of Southern Medical University 2023;43(7):1116-1126
OBJECTIVE:
To investigate the potential mechanisms that mediate the inhibitory effect of porcine recombinant NKlysin (prNK-lysin) against liver cancer cell metastasis.
METHODS:
HPLC-tandem mass spectrometry was used to identify the differentially expressed proteins in prNK-lysin-treated hepatocellular carcinoma SMMOL/LC-7721 cells in comparison with the control and PBS-treated cells. GO functional annotation and KEGG pathway analysis of the differentially expressed proteins were performed using GO and KEGG databases. RT-qPCR was used to determine the mRNA expression levels of polypeptide-N-acetylgalactosaminotransferase 13 (GALNT13), transmembrane protein 51 (TMEM51) and FKBP prolyl isomerase 3 (FKBP3) in the cells, and the protein expression of FKBP3 was verified using Western blotting.
RESULTS:
Proteomic analysis identified 1989 differentially expressed proteins in prNK-lysin-treated cells compared with the control cells, and 2753 compared with PBS-treated cells. Fifteen proteins were differentially expressed between PBS-treated and the control cells, and 1909 were differentially expressed in prNK- lysin group compared with both PBS and control groups. These differentially expressed proteins were involved mainly in the viral process, translational initiation and RNA binding and were enriched mainly in ribosome, protein process in endoplasmic reticulum, and RNA transport pathways. RT-qPCR showed that compared with the control group, prNK-lysin treatment significantly increased the mRNA expressions of GALNT13 (P < 0.05) and TMEM51 (P < 0.01) and lowered FKBP3 mRNA expression (P < 0.05). Western blotting also showed a significantly decreased expression of FKBP3 protein in prNK-lysin-treated cells (P < 0.001).
CONCLUSION
Treatment with prNK-lysin causes significant changes in protein expression profile of SMMOL/LC-7721 cells and inhibits hepatocellular carcinoma metastasis by downregulating FKBP3 protein and affecting the cellular oxidative phosphorylation and glycolysis pathways.
Animals
;
Swine
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Oxidative Phosphorylation
;
Proteomics
;
Glycolysis
;
RNA, Messenger
2.Berberine targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia with IDH1 mutation.
Zhe HUANG ; Yunfu SHEN ; Wenjun LIU ; Yan YANG ; Ling GUO ; Qin YAN ; Chengming WEI ; Qulian GUO ; Xianming FAN ; Wenzhe MA
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):136-145
Metabolic reprogramming, a newly recognized trait of tumor biology, is an intensively studied prospect for oncology medicines. For numerous tumors and cancer cell subpopulations, oxidative phosphorylation (OXPHOS) is essential for their biosynthetic and bioenergetic functions. Cancer cells with mutations in isocitrate dehydrogenase 1 (IDH1) exhibit differentiation arrest, epigenetic and transcriptional reprogramming, and sensitivity to mitochondrial OXPHOS inhibitors. In this study, we report that berberine, which is widely used in China to treat intestinal infections, acted solely at the mitochondrial electron transport chain (ETC) complex I, and that its association with IDH1 mutant inhibitor (IDH1mi) AG-120 decreased mitochondrial activity and enhanced antileukemic effect in vitro andin vivo. Our study gives a scientific rationale for the therapy of IDH1 mutant acute myeloid leukemia (AML) patients using combinatory mitochondrial targeted medicines, particularly those who are resistant to or relapsing from IDH1mi.
Humans
;
Oxidative Phosphorylation
;
Berberine
;
Electron Transport
;
Mitochondria
;
Leukemia, Myeloid, Acute
;
Isocitrate Dehydrogenase
3.Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine.
Jiani CAO ; Meng LI ; Kun LIU ; Xingxing SHI ; Ning SUI ; Yuchen YAO ; Xiaojing WANG ; Shiyu LI ; Yuchang TIAN ; Shaojing TAN ; Qian ZHAO ; Liang WANG ; Xiahua CHAI ; Lin ZHANG ; Chong LIU ; Xing LI ; Zhijie CHANG ; Dong LI ; Tongbiao ZHAO
Protein & Cell 2023;14(5):376-381
4.Effect of glutamine metabolism on chemoresistance and its mechanism in tumors.
Liyuan ZHU ; Xinyang HU ; Hongchuan JIN
Journal of Zhejiang University. Medical sciences 2021;50(1):32-40
The metabolic reprogramming of tumor cells is characterized by increased uptake of various nutrients including glutamine. Glutamine metabolism provides the required substances for glycolysis and oxidative phosphorylation and affects the homeostasis of carbohydrate,fat and protein metabolism to induce the chemoresistance of tumor cells. Combination of chemotherapeutic agents with inhibitors specific to different components of glutamine metabolic pathway has obtained favorable clinical results on various tumors. Glutamine metabolic pathway plays a role in drug resistance of tumor cells in various ways. Firstly,the dynamic change of glutamine transporters can directly affect intracellular glutamine content thereby causing drug resistance; secondly,tumor stromal cells including adipocyte,fibroblast and metabolite from tumor microenvironment would give rise to immune-mediated drug resistance; thirdly,the expression and activity of key enzymes in glutamine metabolism also has a critical role in drug resistance of tumors. This article reviews the effects of glutamine metabolic pathway in the development of tumor chemoresistance,in terms of transporters,tumor microenvironment and metabolic enzymes,to provide insight for improving the therapeutic efficacy for drug-resistant tumors.
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
Glutamine/metabolism*
;
Glycolysis
;
Humans
;
Neoplasms/drug therapy*
;
Oxidative Phosphorylation
;
Tumor Microenvironment
5.Neuroprotective effects of urolithin A on H₂O₂-induced oxidative stress-mediated apoptosis in SK-N-MC cells
Kkot Byeol KIM ; Seonah LEE ; Jung Hee KIM
Nutrition Research and Practice 2020;14(1):3-11
Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H₂O₂-induced neuronal cell death.MATERIALS/METHODS: We induced oxidative damage with 300 µM H₂O₂ after UA pretreatment at concentrations of 1.25, 2.5, and 5 µM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting.RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway.CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.]]>
Apoptosis
;
Biological Availability
;
Blotting, Western
;
Caspase 3
;
Caspase 9
;
Cell Death
;
Cell Survival
;
Cytochromes c
;
Ellagic Acid
;
Hydrolyzable Tannins
;
Insurance Benefits
;
Neurodegenerative Diseases
;
Neurons
;
Neuroprotective Agents
;
Oxidative Stress
;
p38 Mitogen-Activated Protein Kinases
;
Phosphorylation
;
Protein Kinases
;
Reactive Oxygen Species
;
Sincalide
6.Imbalance of Gut Streptococcus, Clostridium, and Akkermansia Determines the Natural Course of Atopic Dermatitis in Infant
Yoon Mee PARK ; So Yeon LEE ; Mi Jin KANG ; Bong Soo KIM ; Min Jung LEE ; Sung Su JUNG ; Ji Sun YOON ; Hyun Ju CHO ; Eun LEE ; Song I YANG ; Ju Hee SEO ; Hyo Bin KIM ; Dong In SUH ; Youn Ho SHIN ; Kyung Won KIM ; Kangmo AHN ; Soo Jong HONG
Allergy, Asthma & Immunology Research 2020;12(2):322-337
PURPOSE: The roles of gut microbiota on the natural course of atopic dermatitis (AD) are not yet fully understood. We investigated whether the composition and function of gut microbiota and short-chain fatty acids (SCFAs) at 6 months of age could affect the natural course of AD up to 24 months in early childhood.METHODS: Fecal samples from 132 infants were analyzed using pyrosequencing, including 84 healthy controls, 22 transient AD and 26 persistent AD subjects from the Cohort for Childhood Origin of Asthma and Allergic Diseases (COCOA) birth cohort. The functional profile of the gut microbiome was analyzed by whole-metagenome sequencing. SCFAs were measured using gas chromatography-mass spectrometry.RESULTS: Low levels of Streptococcus and high amounts of Akkermansia were evident in transient AD cases, and low Clostridium, Akkermansia and high Streptococcus were found in children with persistent AD. The relative abundance of Streptococcus positively correlated with scoring of AD (SCORAD) score, whereas that of Clostridium negatively correlated with SCORAD score. The persistent AD group showed decreased gut microbial functional genes related to oxidative phosphorylation compared with healthy controls. Butyrate and valerate levels were lower in transient AD infants compared with healthy and persistent AD infants.CONCLUSIONS: Compositions, functions and metabolites of the early gut microbiome are related to natural courses of AD in infants.
Asthma
;
Butyrates
;
Child
;
Clostridium
;
Cohort Studies
;
Dermatitis, Atopic
;
Fatty Acids, Volatile
;
Gas Chromatography-Mass Spectrometry
;
Gastrointestinal Microbiome
;
Humans
;
Infant
;
Metabolomics
;
Metagenome
;
Oxidative Phosphorylation
;
Parturition
;
Streptococcus
7.Metabolic Reprogramming by the Excessive AMPK Activation Exacerbates Antigen-Specific Memory CD8⁺ T Cell Differentiation after Acute Lymphocytic Choriomeningitis Virus Infection
Jimin SON ; Yong Woo CHO ; Youn Jung WOO ; Young Ae BAEK ; Eun Jee KIM ; Yuri CHO ; Joon Ye KIM ; Beom Seok KIM ; Jason Jungsik SONG ; Sang Jun HA
Immune Network 2019;19(2):e11-
During virus infection, T cells must be adapted to activation and lineage differentiation states via metabolic reprogramming. Whereas effector CD8⁺ T cells preferentially use glycolysis for their rapid proliferation, memory CD8⁺ T cells utilize oxidative phosphorylation for their homeostatic maintenance. Particularly, enhanced AMP-activated protein kinase (AMPK) activity promotes the memory T cell response through different pathways. However, the level of AMPK activation required for optimal memory T cell differentiation remains unclear. A new metformin derivative, IM156, formerly known as HL156A, has been reported to ameliorate various types of fibrosis and inhibit in vitro and in vivo tumors by inducing AMPK activation more potently than metformin. Here, we evaluated the in vivo effects of IM156 on antigen-specific CD8⁺ T cells during their effector and memory differentiation after acute lymphocytic choriomeningitis virus infection. Unexpectedly, our results showed that in vivo treatment of IM156 exacerbated the memory differentiation of virus-specific CD8⁺ T cells, resulting in an increase in short-lived effector cells but decrease in memory precursor effector cells. Thus, IM156 treatment impaired the function of virus-specific memory CD8⁺ T cells, indicating that excessive AMPK activation weakens memory T cell differentiation, thereby suppressing recall immune responses. This study suggests that metabolic reprogramming of antigen-specific CD8⁺ T cells by regulating the AMPK pathway should be carefully performed and managed to improve the efficacy of T cell vaccine.
AMP-Activated Protein Kinases
;
Cell Differentiation
;
Fibrosis
;
Glycolysis
;
Immunologic Memory
;
In Vitro Techniques
;
Lymphocytic choriomeningitis virus
;
Lymphocytic Choriomeningitis
;
Memory
;
Metformin
;
Oxidative Phosphorylation
;
T-Lymphocytes
8.Regulation of Systemic Glucose Homeostasis by T Helper Type 2 Cytokines
Yea Eun KANG ; Hyun Jin KIM ; Minho SHONG
Diabetes & Metabolism Journal 2019;43(5):549-559
Obesity results in an inflammatory microenvironment in adipose tissue, leading to the deterioration of tissue protective mechanisms. Although recent studies suggested the importance of type 2 immunity in an anti-inflammatory microenvironment in adipose tissue, the regulatory effects of T helper 2 (Th2) cytokines on systemic metabolic regulation are not fully understood. Recently, we identified the roles of the Th2 cytokine (interleukin 4 [IL-4] and IL-13)-induced adipokine, growth differentiation factor 15 (GDF15), in adipose tissue in regulating systemic glucose metabolism via signal transducer and activator of transcription 6 (STAT6) activation. Moreover, we showed that mitochondrial oxidative phosphorylation is required to maintain these macrophage-regulating autocrine and paracrine signaling pathways via Th2 cytokine-induced secretion of GDF15. In this review, we discuss how the type 2 immune response and Th2 cytokines regulate metabolism in adipose tissue. Specifically, we review the systemic regulatory roles of Th2 cytokines in metabolic disease and the role of mitochondria in maintenance of type 2 responses in adipose tissue homeostasis.
Adipokines
;
Adipose Tissue
;
Cytokines
;
Glucose
;
Growth Differentiation Factor 15
;
Homeostasis
;
Metabolic Diseases
;
Metabolism
;
Mitochondria
;
Obesity
;
Oxidative Phosphorylation
;
Paracrine Communication
;
STAT6 Transcription Factor
9.Spinal Nitric Oxide Synthase Type II Increases Neurosteroid-metabolizing Cytochrome P450c17 Expression in a Rodent Model of Neuropathic Pain
Sheu Ran CHOI ; Alvin J BEITZ ; Jang Hern LEE
Experimental Neurobiology 2019;28(4):516-528
We have previously demonstrated that the neurosteroid dehydroepiandrosterone sulfate (DHEAS) induces functional potentiation of N-methyl-D-aspartate (NMDA) receptors via increases in phosphorylation of NMDA receptor GluN1 subunit (pGluN1). However, the modulatory mechanisms responsible for the expression of the DHEA-synthesizing enzyme, cytochrome P450c17 following peripheral nerve injury have yet to be examined. Here we determined whether oxidative stress induced by the spinal activation of nitric oxide synthase type II (NOS-II) modulates the expression of P450c17 and whether this process contributes to the development of neuropathic pain in rats. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of NOS-II in microglial cells and NO levels in the lumbar spinal cord dorsal horn at postoperative day 5. Intrathecal administration of the NOS-II inhibitor, L-NIL during the induction phase of neuropathic pain (postoperative days 0~5) significantly reduced the CCI-induced development of mechanical allodynia and thermal hyperalgesia. Sciatic nerve injury increased the expression of PKC- and PKA-dependent pGluN1 as well as the mRNA and protein levels of P450c17 in the spinal cord at postoperative day 5, and these increases were suppressed by repeated administration of L-NIL. Co-administration of DHEAS together with L-NIL restored the development of neuropathic pain and pGluN1 that were originally inhibited by L-NIL administration alone. Collectively these results provide strong support for the hypothesis that activation of NOS-II increases the mRNA and protein levels of P450c17 in the spinal cord, ultimately leading to the development of central sensitization and neuropathic pain induced by peripheral nerve injury.
Animals
;
Central Nervous System Sensitization
;
Constriction
;
Cytochromes
;
Dehydroepiandrosterone
;
Dehydroepiandrosterone Sulfate
;
Hyperalgesia
;
N-Methylaspartate
;
Neuralgia
;
Nitric Oxide Synthase Type II
;
Nitric Oxide Synthase
;
Nitric Oxide
;
Oxidative Stress
;
Peripheral Nerve Injuries
;
Phosphorylation
;
Rats
;
RNA, Messenger
;
Rodentia
;
Sciatic Nerve
;
Spinal Cord
;
Spinal Cord Dorsal Horn
10.Association of mitochondrial haplogroup F with physical performance in korean population
In Wook HWANG ; Kicheol KIM ; Eun Ji CHOI ; Han Jun JIN
Genomics & Informatics 2019;17(1):e11-
Athletic performance is a complex multifactorial trait involving genetic and environmental factors. The heritability of an athlete status was reported to be about 70% in a twin study, and at least 155 genetic markers are known to be related with athlete status. Mitochondrial DNA (mtDNA) encodes essential proteins for oxidative phosphorylation, which is related to aerobic capacity. Thus, mtDNA is a candidate marker for determining physical performance. Recent studies have suggested that polymorphisms of mtDNA are associated with athlete status and/or physical performance in various populations. Therefore, we analyzed mtDNA haplogroups to assess their association with the physical performance of Korean population. The 20 mtDNA haplogroups were determined using the SNaPshot assay. Our result showed a significant association of the haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval, 1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ± 3.04) also demonstrated a higher Sargent jump than athletes with other haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply that haplogroup F may play a crucial role in the physical performance of Korean athletes. Functional studies with larger sample sizes are necessary to further substantiate these findings.
Athletes
;
Athletic Performance
;
DNA, Mitochondrial
;
Genetic Markers
;
Humans
;
Oxidative Phosphorylation
;
Sample Size

Result Analysis
Print
Save
E-mail