1.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
2.Interaction between macrophages and ferroptosis: Metabolism, function, and diseases.
Qiaoling JIANG ; Rongjun WAN ; Juan JIANG ; Tiao LI ; Yantong LI ; Steven YU ; Bingrong ZHAO ; Yuanyuan LI
Chinese Medical Journal 2025;138(5):509-522
Ferroptosis, an iron-dependent programmed cell death process driven by reactive oxygen species-mediated lipid peroxidation, is regulated by several metabolic processes, including iron metabolism, lipid metabolism, and redox system. Macrophages are a group of innate immune cells that are widely distributed throughout the body, and play pivotal roles in maintaining metabolic balance by its phagocytic and efferocytotic effects. There is a profound association between the biological functions of macrophage and ferroptosis. Therefore, this review aims to elucidate three key aspects of the unique relationship between macrophages and ferroptosis, including macrophage metabolism and their regulation of cellular ferroptosis; ferroptotic stress that modulates functions of macrophage and promotion of inflammation; and the effects of macrophage ferroptosis and its role in diseases. Finally, we also summarize the possible mechanisms of macrophages in regulating the ferroptosis process at the global and local levels, as well as the role of ferroptosis in the macrophage-mediated inflammatory process, to provide new therapeutic insights for a variety of diseases.
Ferroptosis/physiology*
;
Macrophages/metabolism*
;
Humans
;
Animals
;
Iron/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Lipid Peroxidation/physiology*
;
Inflammation/metabolism*
3.Research progress on the role and mechanism of ferroptosis in heart diseases.
Yu-Tong CUI ; Xin-Xin ZHU ; Qi ZHANG ; Ai-Juan QU
Acta Physiologica Sinica 2025;77(1):75-84
Cardiovascular disease remains the leading cause of death in China, with its morbidity and mortality continue to rise. Ferroptosis, a unique form of iron-dependent cell death, plays a major role in many heart diseases. The classical mechanisms of ferroptosis include iron metabolism disorder, oxidative antioxidant imbalance and lipid peroxidation. Recent studies have found many additional mechanisms of ferroptosis, such as coenzyme Q10, ferritinophagy, lipid autophagy, mitochondrial metabolism disorder, and the regulation by nuclear factor erythroid 2-related factor 2 (NRF2). This article reviews recent advances in understanding the mechanisms of ferroptosis and its role in heart failure, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, myocardial toxicity of doxorubicin, septic cardiomyopathy, and arrhythmia. Furthermore, we discuss the potential of ferroptosis inhibitors/inducers as therapeutic targets for heart diseases, suggesting that ferroptosis may be an important intervention target of heart diseases.
Ferroptosis/physiology*
;
Humans
;
Heart Diseases/physiopathology*
;
NF-E2-Related Factor 2/physiology*
;
Animals
;
Myocardial Reperfusion Injury/physiopathology*
;
Lipid Peroxidation
;
Heart Failure/physiopathology*
;
Iron/metabolism*
;
Diabetic Cardiomyopathies/physiopathology*
;
Ubiquinone/analogs & derivatives*
4.Research progress on the role of mitochondrial complex I in the pathogenesis of Parkinson's disease.
Acta Physiologica Sinica 2025;77(1):167-180
Currently, the incidence of Parkinson's disease (PD) is on the rise. More and more evidences suggest that mitochondrial dysfunction plays a crucial role in the etiology of PD, and dysfunction of mitochondrial complex I (MCI) is one of the most critical factors leading to mitochondrial dysfunction. On one hand, MCI dysfunction stimulates dopaminergic neurons to produce reactive oxygen species (ROS). On the other hand, MCI dysfunction decreases dopaminergic neuron viability and reduces ATP production. All these outcomes promote the pathological progression of PD. This review summarizes research progress on the role of MCI in the pathogenesis of PD, as well as PD treatment strategies based on MCI.
Parkinson Disease/metabolism*
;
Humans
;
Electron Transport Complex I/metabolism*
;
Mitochondria/physiology*
;
Reactive Oxygen Species/metabolism*
;
Dopaminergic Neurons/metabolism*
;
Animals
;
Adenosine Triphosphate/metabolism*
5.CXCR3 counteracts cisplatin-induced muscle atrophy by regulating E3 ubiquitin ligases, myogenic factors, and fatty acid β-oxidation pathways.
Miao-Miao XU ; Xiao-Guang LIU ; Li-Ming LU ; Zhao-Wei LI
Acta Physiologica Sinica 2025;77(2):255-266
This study aims to explore the role and mechanism of CXC chemokine receptor 3 (CXCR3) in cisplatin-induced skeletal muscle atrophy. Wild-type mice were divided into two groups: cisplatin group and control group (treated by normal saline). The results showed that, compared to the control group, the expression levels of CXCR3 mRNA and protein were significantly up-regulated in the skeletal muscle of the cisplatin group, suggesting that CXCR3 may play an important role in the model of cisplatin-induced skeletal muscle atrophy. To further investigate its role and potential mechanisms, CXCR3 knockout mice and wild-type mice were treated with cisplatin to induce skeletal muscle atrophy. The results revealed that CXCR3 knockout not only failed to alleviate cisplatin-induced skeletal muscle atrophy, but also further reduced body weight, skeletal muscle mass, and muscle fiber cross-sectional area. Further analysis showed that, in the cisplatin-induced muscle atrophy model, CXCR3 knockout significantly up-regulated the expression levels of E3 ubiquitin ligases in skeletal muscle and down-regulated the expression levels of myogenic regulatory factors. To explore the molecular mechanism by which CXCR3 gene deletion exacerbated cisplatin-induced skeletal muscle atrophy, transcriptomic sequencing was performed on the atrophied skeletal muscles of wild-type and CXCR3 knockout mice. The results showed that, compared to wild-type mice, 14 genes were significantly up-regulated and 12 genes were significantly down-regulated in the skeletal muscle of CXCR3 knockout mice. Gene set enrichment analysis (GSEA) revealed a significant enrichment of genes related to fatty acid β-oxidation. Quantitative real-time PCR validation results were consistent with the transcriptomic sequencing results. These findings suggest that CXCR3 may counteract cisplatin-induced skeletal muscle atrophy by up-regulating E3 ubiquitin ligases, down-regulating myogenic regulatory factors, and enhancing the recruitment of fatty acid β-oxidation-related genes.
Animals
;
Cisplatin/adverse effects*
;
Muscular Atrophy/physiopathology*
;
Mice
;
Receptors, CXCR3/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Mice, Knockout
;
Oxidation-Reduction
;
Fatty Acids/metabolism*
;
Muscle, Skeletal/metabolism*
;
Mice, Inbred C57BL
;
Male
6.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
7.Redox signaling regulation in human spermatozoa: a primary role of peroxiredoxins.
Asian Journal of Andrology 2025;27(5):556-563
Reactive oxygen species (ROS) play a dual role in mammalian spermatozoa. At high levels, they are detrimental to sperm function since they can promote oxidative stress that produces oxidation of protein, lipids, and sperm DNA. This oxidative damage is associated with male infertility. On the other hand, when ROS are produced at low levels, they participate in the redox signaling necessary for sperm capacitation. Capacitation-associated ROS are produced by the sperm oxidase, whose identity is still elusive, located in the plasma membrane of the spermatozoon. ROS, such as superoxide anion, hydrogen peroxide, nitric oxide, and peroxynitrite, activate protein kinases and inactivate protein phosphatases with the net increase of specific phosphorylation events. Peroxiredoxins (PRDXs), antioxidant enzymes that fight against oxidative stress, regulate redox signaling during capacitation. Among them, PRDX6, which possesses peroxidase and calcium-independent phospholipase A 2 (iPLA 2 ) activities, is the primary regulator of redox signaling and the antioxidant response in human spermatozoa. The lysophosphatidic acid signaling is essential to maintain sperm viability by activating the phosphatidylinositol 3-kinase/protein kinase (PI3K/AKT) pathway, and it is regulated by PRDX6 iPLA 2 , protein kinase C (PKC), and receptor-type protein tyrosine kinase. The understanding of redox signaling is crucial to pave the way for novel diagnostic tools and treatments of male infertility.
Humans
;
Male
;
Spermatozoa/physiology*
;
Signal Transduction/physiology*
;
Oxidation-Reduction
;
Peroxiredoxins/physiology*
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress/physiology*
;
Sperm Capacitation/physiology*
;
Infertility, Male/metabolism*
8.The role of polyunsaturated fatty acid lipid peroxidation in ferroptosis after intracerebral hemorrhage: a review of mecha-nisms and therapeutic implications.
Man GUO ; Guohui ZHAO ; Zhibiao CAI ; Zhenyu ZHANG ; Jie ZHOU
Journal of Zhejiang University. Medical sciences 2025;54(5):694-704
Ferroptosis, a regulated cell death process distinct from apoptosis, is characterized by iron dysregulation and reactive oxygen species (ROS) accumulation. After intracerebral hemorrhage (ICH), decreased cerebral blood flow and iron released from erythrocytes trigger lipid peroxidation-particularly of polyunsaturated fatty acids (PUFAs)-through a cascade of reactions in local brain tissues, promoting ferroptosis. Mitochondrial dysfunction and neuroinflammation further elevate ROS, exacerbating lipid peroxidation and accelerating neuronal ferroptosis. Thus, PUFA peroxidation and associated metabolic pathways play a critical role in ICH-related neuronal damage. This review summarizes current understanding of how PUFA peroxidation contributes to ferro-ptosis after ICH, discusses key regulatory mechanisms involving lipid and iron metabolism, and highlights potential therapeutic strategies targeting ferroptosis to improve neurological outcomes.
Ferroptosis/physiology*
;
Humans
;
Cerebral Hemorrhage/pathology*
;
Lipid Peroxidation
;
Fatty Acids, Unsaturated/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iron/metabolism*
;
Animals
;
Mitochondria/metabolism*
9.The mechanism of Ferroptosis in Aplastic Anemia --Review.
Yu-Jie QIN ; Hai-Song LU ; Wei-Min CHENG
Journal of Experimental Hematology 2025;33(5):1538-1541
Ferroptosis initiates membrane oxidative damage through lipid peroxidation and iron accumulation, and accumulates reactive oxygen species (ROS) during aplastic anemia (AA). Ferroptosis induces damage and apoptosis of hematopoietic stem/progenitor cells, mesenchymal stem cells, blood cells, and T lymphocytes through various pathways, inhibits bone marrow hematopoiesis, damages bone marrow microenvironment, exacerbates immune imbalance, leading to bone marrow failure and disease progression. Therefore, further exploring the ferroptosis mechanism in AA can help clarify the pathogenesis of disease and provide new research ideas and directions for the treatment of AA.
Anemia, Aplastic/metabolism*
;
Humans
;
Ferroptosis
;
Reactive Oxygen Species/metabolism*
;
Lipid Peroxidation
;
Hematopoietic Stem Cells
;
Apoptosis
10.Research Progress on the Regulation of Third-generation EGFR-TKIs Resistance in Non-small Cell Lung Cancer by Redox Homeostasis.
Ting LUO ; Chen FANG ; Feng QIU
Chinese Journal of Lung Cancer 2025;28(7):521-532
Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of "oxidative stress compensation" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative "metabolic checkpoint" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/genetics*
;
Drug Resistance, Neoplasm/drug effects*
;
Lung Neoplasms/genetics*
;
Oxidation-Reduction/drug effects*
;
Homeostasis/drug effects*
;
Protein Kinase Inhibitors/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Animals

Result Analysis
Print
Save
E-mail