1.CXCR3 counteracts cisplatin-induced muscle atrophy by regulating E3 ubiquitin ligases, myogenic factors, and fatty acid β-oxidation pathways.
Miao-Miao XU ; Xiao-Guang LIU ; Li-Ming LU ; Zhao-Wei LI
Acta Physiologica Sinica 2025;77(2):255-266
This study aims to explore the role and mechanism of CXC chemokine receptor 3 (CXCR3) in cisplatin-induced skeletal muscle atrophy. Wild-type mice were divided into two groups: cisplatin group and control group (treated by normal saline). The results showed that, compared to the control group, the expression levels of CXCR3 mRNA and protein were significantly up-regulated in the skeletal muscle of the cisplatin group, suggesting that CXCR3 may play an important role in the model of cisplatin-induced skeletal muscle atrophy. To further investigate its role and potential mechanisms, CXCR3 knockout mice and wild-type mice were treated with cisplatin to induce skeletal muscle atrophy. The results revealed that CXCR3 knockout not only failed to alleviate cisplatin-induced skeletal muscle atrophy, but also further reduced body weight, skeletal muscle mass, and muscle fiber cross-sectional area. Further analysis showed that, in the cisplatin-induced muscle atrophy model, CXCR3 knockout significantly up-regulated the expression levels of E3 ubiquitin ligases in skeletal muscle and down-regulated the expression levels of myogenic regulatory factors. To explore the molecular mechanism by which CXCR3 gene deletion exacerbated cisplatin-induced skeletal muscle atrophy, transcriptomic sequencing was performed on the atrophied skeletal muscles of wild-type and CXCR3 knockout mice. The results showed that, compared to wild-type mice, 14 genes were significantly up-regulated and 12 genes were significantly down-regulated in the skeletal muscle of CXCR3 knockout mice. Gene set enrichment analysis (GSEA) revealed a significant enrichment of genes related to fatty acid β-oxidation. Quantitative real-time PCR validation results were consistent with the transcriptomic sequencing results. These findings suggest that CXCR3 may counteract cisplatin-induced skeletal muscle atrophy by up-regulating E3 ubiquitin ligases, down-regulating myogenic regulatory factors, and enhancing the recruitment of fatty acid β-oxidation-related genes.
Animals
;
Cisplatin/adverse effects*
;
Muscular Atrophy/physiopathology*
;
Mice
;
Receptors, CXCR3/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Mice, Knockout
;
Oxidation-Reduction
;
Fatty Acids/metabolism*
;
Muscle, Skeletal/metabolism*
;
Mice, Inbred C57BL
;
Male
2.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
3.Redox signaling regulation in human spermatozoa: a primary role of peroxiredoxins.
Asian Journal of Andrology 2025;27(5):556-563
Reactive oxygen species (ROS) play a dual role in mammalian spermatozoa. At high levels, they are detrimental to sperm function since they can promote oxidative stress that produces oxidation of protein, lipids, and sperm DNA. This oxidative damage is associated with male infertility. On the other hand, when ROS are produced at low levels, they participate in the redox signaling necessary for sperm capacitation. Capacitation-associated ROS are produced by the sperm oxidase, whose identity is still elusive, located in the plasma membrane of the spermatozoon. ROS, such as superoxide anion, hydrogen peroxide, nitric oxide, and peroxynitrite, activate protein kinases and inactivate protein phosphatases with the net increase of specific phosphorylation events. Peroxiredoxins (PRDXs), antioxidant enzymes that fight against oxidative stress, regulate redox signaling during capacitation. Among them, PRDX6, which possesses peroxidase and calcium-independent phospholipase A 2 (iPLA 2 ) activities, is the primary regulator of redox signaling and the antioxidant response in human spermatozoa. The lysophosphatidic acid signaling is essential to maintain sperm viability by activating the phosphatidylinositol 3-kinase/protein kinase (PI3K/AKT) pathway, and it is regulated by PRDX6 iPLA 2 , protein kinase C (PKC), and receptor-type protein tyrosine kinase. The understanding of redox signaling is crucial to pave the way for novel diagnostic tools and treatments of male infertility.
Humans
;
Male
;
Spermatozoa/physiology*
;
Signal Transduction/physiology*
;
Oxidation-Reduction
;
Peroxiredoxins/physiology*
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress/physiology*
;
Sperm Capacitation/physiology*
;
Infertility, Male/metabolism*
4.Research Progress on the Regulation of Third-generation EGFR-TKIs Resistance in Non-small Cell Lung Cancer by Redox Homeostasis.
Ting LUO ; Chen FANG ; Feng QIU
Chinese Journal of Lung Cancer 2025;28(7):521-532
Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of "oxidative stress compensation" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative "metabolic checkpoint" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/genetics*
;
Drug Resistance, Neoplasm/drug effects*
;
Lung Neoplasms/genetics*
;
Oxidation-Reduction/drug effects*
;
Homeostasis/drug effects*
;
Protein Kinase Inhibitors/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Animals
5.Correlation of seminal plasma oxidation reduction potential and sperm DNA fragmentation index to sperm motion parameters and their predictive value for oligoasthenozoospermia.
Li-Sha CHEN ; Ning ZHANG ; Xing-Chi LIU ; Qian ZHANG ; Li-Yan LI ; Yue-Xin YU
National Journal of Andrology 2025;31(1):11-18
OBJECTIVE:
To investigate the correlation of seminal plasma oxidation reduction potential (ORP), normalized oxidation-reduction potential (nORP) and sperm DNA fragmentation index (DFI) to sperm motion parameters, and their clinical predictive value for oligoasthenozoospermia (OAZ).
METHODS:
This study included 433 male subjects visiting the Clinic of Andrology in our hospital from March to May 2024. According to sperm concentration and the percentage of progressively motile sperm (PMS), we divided them into a normal control (n = 119), an oligozoospermia (OZ, n = 118), an athenozoospermia (AZ, n = 119) and an OAZ group (n = 77). Using the electrode method, we measured the seminal plasma ORP, calculated nORP=ORP/sperm concentration (mV/[10⁶/ml]), and determined DFI and high DNA chromatin sperm (HDS) by flow cytometry based on sperm chromatin structure assay (SCSA), followed by comparison among the four groups in age, abstinence days, semen volume, total sperm count, sperm concentration, PMS, non-progressively motile sperm (NPMS), immotile sperm (IMS), curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), linearity (LIN), straightness(STR), wobble (WOB), DFI, HDS, ORP and nORP. Using the receiver operating characteristic (ROC) curve, we assessed the predictive value of DFI, ORP and nORP for OAZ, and analyzed the correlation of DFI, ORP and nORP to sperm motion parameters by Pearson and Spearman analyses.
RESULTS:
Statistical analysis revealed statistically significant differences among the four groups in semen volume, abstinence days, total sperm count, sperm concentration, PMS, NPMS, IMS, total sperm motility, VCL, VSL, VAP, STR, DFI, HDS, ORP and nORP (P < 0.05), but not in age, LIN and WOB (P > 0.05). The area under the ROC curve (AUC) for the predictive value of DFI for OAZ was 0.880, with the critical value of 8.920, sensitivity of 74.8% and specificity of 88.2%; that of ORP for AZ was 0.698, with the critical value of 155.375, sensitivity of 70.6% and specificity of 64.7%; and that of nORP for OZ was 0.999, with the critical value of 9.844, sensitivity of 98.3% and specificity of 99.2%. Pearson and Spearman correlation analyses showed that DFI was correlated positively with age, abstinence days, semen volume, IMS, HDS and ORP, but negatively with PMS, NPMS, total sperm motility, VCL, VSL, VAP and STR; ORP positively with abstinence days, semen volume, IMS, DFI and nORP, but negatively with PMS, NPMS, total sperm motility, VSL, LIN and STR; and nORP positively with HDS, but negatively with abstinence days, total sperm count, sperm concentration, PMS and NPMS.
CONCLUSION
Oxidative stress (OS) may be an important pathological factor for elevated ORP, increased DFI and changes of routine sperm motion parameters, consequently leading to OAZ. As OS markers, DFI and ORP have a high predictive value for OS-induced OAZ.
Male
;
Humans
;
DNA Fragmentation
;
Semen/metabolism*
;
Sperm Motility
;
Spermatozoa
;
Oxidation-Reduction
;
Adult
;
Oligospermia
;
Sperm Count
;
Semen Analysis
;
Asthenozoospermia
6.Association among seminal oxidation-reduction potential, sperm DNA fragments and semen parameters in patients with varicocele.
Xiao-Chuan GUAN ; Yue-Xin YU ; Ning ZHANG ; Jing ZHOU ; Jia-Ping YU ; Yu WANG ; Xing-Chi LIU ; Bo-Lun WANG
National Journal of Andrology 2025;31(7):591-596
OBJECTIVE:
To investigate the relationship among seminal oxidation-reduction potential (nORP), sperm DNA fragmentation (DFI) and semen parameters in patients with varicocele.
METHODS:
Clinical data of 522 patients treated in the reproductive andrology clinic of the Northern Theater General Hospital from November 2023 to December 2023 were retrospectively analyzed, including 435 men of childbearing age and 87 men of infertile age. The patients were divided into the varicocele group (n=116) and non-varicocele group (n=406) according to clinical diagnosis. The differences of seminal plasma nORP, DFI, sperm high DNA stain ability (HDS) and semen parameters were analyzed between the two groups. The relationship among general clinical data, seminal plasma nORP, semen parameters, DFI and HDS in patients with varicocele were further analyzed. According to the severity of varicocele, the patients were divided into three groups, including mild, moderate and severe. And the differences of seminal plasma nORP and semen parameters, DFI and HDS among all groups were analyzed. The differences of seminal plasma nORP, semen parameters, DFI and HDS were compared between the varicocele and non-varicocele groups.
RESULTS:
The total sperm count, sperm concentration, progressive motility sperm percentage (PR%) and normal sperm morphology rate (NSMR) in patients with varicocele were significantly lower than those in control group (P<0.05). And seminal plasma nORP, DFI and HDS in patients with varicocele were significantly higher than those in control group (P<0.05). Seminal plasma nORP in patients with varicocele was significantly negatively correlated with total sperm, sperm concentration and NSMR (P<0.05), and significantly positively correlated with DFI and HDS (P<0.05). There were significant differences in nORP, total sperm count, sperm concentration, PR%, DFI and HDS among mild, moderate and severe varicocele groups (P<0.05). Seminal plasma nORP, sperm concentration, PR% and DFI in severe group were significantly lower than those in mild and moderate groups(P<0.05). Sperm count and HDS in severe group were significantly lower than those in mild group (P<0.05). In infertile patients, seminal plasma nORP, DFI and HDS in varicocele group were significantly higher than those in control group (P<0.05). And PR% in varicocele group was significantly lower than that in control group (P<0.05).
CONCLUSIONS
Seminal plasma nORP in patients with varicocele may be an important marker of oxidative stress affecting DFI and semen parameters.
Humans
;
Male
;
Varicocele/metabolism*
;
Semen/metabolism*
;
Spermatozoa
;
Sperm Count
;
Infertility, Male
;
Retrospective Studies
;
DNA Fragmentation
;
Oxidation-Reduction
;
Semen Analysis
;
Adult
;
Sperm Motility
7.Pseudomonas monteilii ZMU-T06 produces 2-substituted quinolines by oxidative dehydroaromatization.
Min YANG ; Lan ZOU ; Huimin RAN ; Lei QIN
Chinese Journal of Biotechnology 2025;41(1):288-295
2-substituted quinolines are the building blocks for the synthesis of natural products and pharmaceuticals. In comparison with classical methods, dehydroaromatization of 2-substituted-1,2,3,4-tetrahydroquinolines has emerged in recent years as an efficient and straightforward method to synthesize quinolines due to its high atom economy and sustainability. However, existing chemical methods need transition metal catalysts and harsh reaction conditions. Biocatalysis with high efficiency, high selectivity, and mild reaction conditions has become an important method of organic synthesis. We mined a strain Pseudomonas monteilii ZMU-T06 capable of producing monoamine oxidase for the dehydroaromatization of 2-substituted-1,2,3,4-tetrahydroquinolines to synthesize 2-substituted quinolines (8 substrates, yields of 45.7%-48.4%) and then hypothesized the catalytic mechanism, providing a new method for green synthesis of 2-substituted quinolines.
Quinolines/chemistry*
;
Pseudomonas/classification*
;
Oxidation-Reduction
;
Monoamine Oxidase/biosynthesis*
;
Biocatalysis
8.Therapeutic potential of NADH: in neurodegenerative diseases characterizde by mitochondrial dysfunction.
Ziyi CHEN ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):57-62
Nicotinamide adenine dinucleotide(NADH) in its reduced form of is a key coenzyme in redox reactions, essential for maintaining energy homeostasis.NADH and its oxidized counterpart, NAD+, form a redox couple that regulates various biological processes, including calcium homeostasis, synaptic plasticity, anti-apoptosis, and gene expression. The reduction of NAD+/NADH levels is closely linked to mitochondrial dysfunction, which plays a pivotal role in the cascade of various neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease.Auditory neuropathy(AN) is recognized as a clinical biomarker in neurodegenerative disorders. Furthermore, mitochondrial dysfunction has been identified in patients with mutations in genes like OPA1and AIFM1. However, effective treatments for these conditions are still lacking. Increasing evidence suggests that administratering NAD+ or its precursors endogenously may potentially prevent and slow disease progression by enhancing DNA repair and improving mitochondrial function. Therefore, this review concentrates on the metabolic pathways of NAD+/NADH production and their biological functions, and delves into the therapeutic potential and mechanisms of NADH in treating AN.
Humans
;
NAD/metabolism*
;
Neurodegenerative Diseases/metabolism*
;
Mitochondria
;
Oxidation-Reduction
;
Mitochondrial Diseases
9.Microorganism-mediated arsenic reduction and its environmental effects.
Teng MAO ; Guoliang CHEN ; Zhihui QU
Chinese Journal of Biotechnology 2024;40(12):4480-4492
Arsenic (As) is a common toxic pollution element. The microorganism-mediated transformation of arsenic forms is an important part in the biogeochemical cycle of As. In the various microbial metabolic processes involving As, the coupling reduction of As has a great impact on the environment and is a process that is easily overlooked. From the biogeochemical cycle of As, this review introduces the microorganism-mediated methane oxidation, anaerobic ammonium oxidation, and iron (Fe)-sulfur (S) oxidation coupled with As reduction. Organic matter, pH, and redox potential are the main factors affecting the coupling reduction. After the coupling reduction, the toxicity and migration of As are greatly enhanced, which may increase the risk of As pollution. Therefore, it is of great significance to clarify the influences of carbon, nitrogen, Fe, S and other elements on the coupling process and explore more microbial processes coupled with As reduction for the prevention and control of As pollution.
Arsenic/metabolism*
;
Oxidation-Reduction
;
Bacteria/metabolism*
;
Environmental Pollutants/metabolism*
;
Biodegradation, Environmental
;
Methane/metabolism*
;
Iron/metabolism*
;
Ammonium Compounds/metabolism*
10.Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities.
Lai XIE ; Min YANG ; Enzhe YANG ; Zhihua LIU ; Xin GENG ; Hong CHEN
Chinese Journal of Biotechnology 2023;39(7):2719-2729
To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.
Denitrification
;
Wastewater
;
Anaerobic Ammonia Oxidation
;
Nitrogen
;
Oxidation-Reduction
;
Bioreactors/microbiology*
;
Ammonium Compounds
;
Bacteria/genetics*
;
Microbiota
;
Sewage

Result Analysis
Print
Save
E-mail