1.Liuwei Dihuang Pills improve chemotherapy-induced ovarian injury in mice by promoting the proliferation of female germline stem cells.
Bo JIANG ; Wen-Yan ZHANG ; Guang-di LIN ; Xiao-Qing MA ; Guo-Xia LAN ; Jia-Wen ZHONG ; Ling QIN ; Jia-Li MAI ; Xiao-Rong LI
China Journal of Chinese Materia Medica 2025;50(9):2495-2504
This study primarily investigates the effect of Liuwei Dihuang Pills on the activation and proliferation of female germline stem cells(FGSCs) in the ovaries and cortex of mice with premature ovarian failure(POF), and how it improves ovarian function. ICR mice were randomly divided into the control group, model group, Liuwei Dihuang Pills group, Liuwei Dihuang Pills double-dose group, and estradiol valerate group. A mouse model of POF was established by intraperitoneal injection of cyclophosphamide. After successful modeling, the mice were treated with Liuwei Dihuang Pills or estradiol valerate for 28 days. Vaginal smears were prepared to observe the estrous cycle and body weight. After the last administration, mice were sacrificed and sampled. Serum levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-Müllerian hormone(AMH) were measured by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe ovarian morphology and to count follicles at all stages to evaluate ovarian function. Immunohistochemistry was used to detect the expression of mouse vasa homolog(MVH), a marker of ovarian FGSCs. Immunofluorescence staining, using co-labeling of MVH and proliferating cell nuclear antigen(PCNA), was used to detect the expression and localization of specific markers of FGSCs. Western blot was employed to assess the protein expression of MVH, octamer-binding transcription factor 4(Oct4), and PCNA in the ovaries. The results showed that compared with the control group, the model group exhibited disordered estrous cycles, decreased ovarian index, increased atretic follicles, and a reduced number of follicles at all stages. FSH and LH levels were significantly elevated, while AMH and E_2 levels were significantly reduced, indicating the success of the model. After treatment with Liuwei Dihuang Pills or estradiol valerate, hormone levels improved, the number of atretic follicles decreased, and the number of follicles at all stages increased. MVH marker protein and PCNA proliferative protein expression in ovarian tissue also increased. These results suggest that Liuwei Dihuang Pills regulate estrous cycles and hormone disorders in POF mice, promote the proliferation of FGSCs, improve follicular development in POF mice, and enhance ovarian function.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Inbred ICR
;
Ovary/cytology*
;
Primary Ovarian Insufficiency/genetics*
;
Follicle Stimulating Hormone/metabolism*
;
Humans
;
Anti-Mullerian Hormone/blood*
;
Antineoplastic Agents/adverse effects*
;
Luteinizing Hormone/metabolism*
;
Cyclophosphamide/adverse effects*
2.Lycium barbarum polysaccharides regulate AMPK/Sirt autophagy pathway to delay D-gal-induced premature ovarian failure.
Yin JIANG ; Hui WANG ; Xiao YU ; Yi DING
China Journal of Chinese Materia Medica 2022;47(22):6175-6182
This study aims to explore the molecular mechanism of Lycium barbarum polysaccharides(LBP) in alleviating premature ovarian failure(POF) in mice via the 5'-adenosine monophosphate activated protein kinase(AMPK)/silent information regulator 1(Sirt1) signaling pathway. The POF mouse model was established by D-galactose(D-gal) injection at the back. Six groups were set up, including a normal control group, a model group, a LBP group, a 3-MA(autophagy inhibitor 3-methyladenine) group, an AMPK inhibitor group, and a LBPAMPK inhibitor group, with 15 mice in each group. After 28 continuous days of administration, enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of sex hormones [estradiol(E_2), luteinizing hormone(LH), and follicle-stimulating hormone(FSH)] in serum. The ovarian mass coefficient was measured. Senescence-associated β-Galactosidase(SA-β-Gal) staining and hematoxylin-eosin(HE) staining were performed for observing the state of ovarian senescence and the morphological changes of the ovary. Immunohistochemical method was used to measure the expression of the autophagy marker LC3-Ⅱ in ovarian tissue. Western blot was employed to measure the expression levels of the senescence marker p16~(INK4 a), autophagy markers(LC3-Ⅱ and Beclin-1), the autophagy substrate p62, lysosome-associated membrane protein 2(LAMP2), and the proteins in the AMPK/Sirt1 pathway and mammalian target of rapamycin complex 1(mTORC1)/UNC-51-like kinase 1 Ser757 site(Ulk1 Ser757) pathway. Compared with the normal control group, the modeling of POF decreased the ovarian granulosa cells and follicles, led to the ovarian aging and severe sex hormone secretion disorders, weakened ovarian autophagy activity, and down-regulated the expression of proteins in the AMPK/Sirt1 pathway(P<0.05). Compared with the model group, the treatment with LBP increased ovarian granulosa cells and follicles, alleviated aging and sex hormone disorders, increased autophagy activity, and activated the AMPK/Sirt1 pathway(P<0.05). Both 3-MA and AMPK inhibitor can inhibit autophagy and aggravate ovarian damage and aging in mice. AMPK inhibitor can partially attenuate the role of LBP in promoting autophagy activation and alleviating aging and ovarian tissue damage(P<0.05). LBP can alleviate the symptoms of POF induced by D-gal by promoting the activation of AMPK/Sirt1 pathway.
Animals
;
Female
;
Humans
;
Mice
;
AMP-Activated Protein Kinases/metabolism*
;
Autophagy/drug effects*
;
Follicle Stimulating Hormone/blood*
;
Lycium/chemistry*
;
Polysaccharides/therapeutic use*
;
Primary Ovarian Insufficiency/drug therapy*
;
Sirtuin 1/metabolism*
3.Improvement in Ovarian Tissue Quality with Supplementation of Antifreeze Protein during Warming of Vitrified Mouse Ovarian Tissue.
Hyun Sun KONG ; Eun Jung KIM ; Hye Won YOUM ; Seul Ki KIM ; Jung Ryeol LEE ; Chang Suk SUH ; Seok Hyun KIM
Yonsei Medical Journal 2018;59(2):331-336
Ice easily recrystallizes during warming after vitrification, and antifreeze protein (AFP) can inhibit the re-crystallization. However, no study has evaluated the effect of AFP treatment only thereon during warming. This study sought to compare AFP treatment protocols: a conventional protocol with AFP treatment during vitrification and first-step warming and a new protocol with AFP treatment during the first-step warming only. According to the protocols, 10 mg/mL of LeIBP (a type of AFP) was used. Five-week-old B6D2F1 mouse ovaries were randomly divided into a vitrified-warmed control and two experimental groups, one treated with the conventional AFP treatment protocol (LeIBP-all) and the other with the new AFP treatment protocol (LeIBP-w). For evaluation, ratios of ovarian follicle integrity, apoptosis, and DNA double-strand (DDS) damage/repairing were analyzed. The LeIBP-treated groups showed significantly higher intact follicle ratios than the control, and the results were similar between the LeIBP-treated groups. Apoptotic follicle ratios were significantly lower in both LeIBP-treated groups than the control, and the results were not significantly different between the LeIBP-treated groups. With regard to DDS damage/repairing follicle ratio, significantly lower ratios were recorded in both LeIBP-treated groups, compared to the control, and the results were similar between the LeIBP-treated groups. This study demonstrated that both protocols with LeIBP had a beneficial effect on maintaining follicle integrity and preventing follicle apoptosis and DDS damage. Moreover, the new protocol showed similar results to the conventional protocol. This new protocol could optimize the mouse ovary vitrification-warming procedure using AFP, while minimizing the treatment steps.
Animals
;
Antifreeze Proteins/*pharmacology
;
Apoptosis/drug effects
;
Cryopreservation
;
Cryoprotective Agents/pharmacology
;
Female
;
Mice
;
Ovarian Follicle/cytology/drug effects
;
Ovary/cytology/drug effects/*physiology
;
*Vitrification/drug effects
4.Toward precision medicine for preserving fertility in cancer patients: existing and emerging fertility preservation options for women.
So Youn KIM ; Seul Ki KIM ; Jung Ryeol LEE ; Teresa K WOODRUFF
Journal of Gynecologic Oncology 2016;27(2):e22-
As the number of young cancer survivors increases, quality of life after cancer treatment is becoming an ever more important consideration. According to a report from the American Cancer Society, approximately 810,170 women were diagnosed with cancer in 2015 in the United States. Among female cancer survivors, 1 in 250 are of reproductive age. Anticancer therapies can result in infertility or sterility and can have long-term negative effects on bone health, cardiovascular health as a result of reproductive endocrine function. Fertility preservation has been identified by many young patients diagnosed with cancer as second only to survival in terms of importance. The development of fertility preservation technologies aims to help patients diagnosed with cancer to preserve or protect their fertility prior to exposure to chemo- or radiation therapy, thus improving their chances of having a family and enhancing their quality of life as a cancer survivor. Currently, sperm, egg, and embryo banking are standard of care for preserving fertility for reproductive-age cancer patients; ovarian tissue cryopreservation is still considered experimental. Adoption and surrogate may also need to be considered. All patients should receive information about the fertility risks associated with their cancer treatment and the fertility preservation options available in a timely manner, whether or not they decide to ultimately pursue fertility preservation. Because of the ever expanding number of options for treating cancer and preserving fertility, there is now an opportunity to take a precision medicine approach to informing patients about the fertility risks associated with their cancer treatment and the fertility preservation options that are available to them.
Adult Stem Cells
;
Cell Culture Techniques
;
Cryopreservation/*methods
;
*Embryo, Mammalian
;
Female
;
Fertility Preservation/*methods
;
Humans
;
Neoplasms/drug therapy/*therapy
;
*Oocytes
;
Ovarian Follicle/drug effects/metabolism/transplantation
;
*Ovary/transplantation
;
Ovulation Induction/methods
;
Precision Medicine
5.Effect and mechanism of Bushen Huoxue recipe on ovarian reserve in mice with premature ovarian failure.
Kun-Kun SONG ; Wen-Wen MA ; Cong HUANG ; Jia-Hui DING ; Dan-Dan CUI ; Xiu-Juan TAN ; Jing XIAO ; Ming-Min ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):571-575
The aim of the present study was to explore the effect and mechanism of Bushen Huoxue recipe (BHR) on ovarian reserve in mice with premature ovarian failure (POF). Mice were divided into 3 groups: normal group, model group and BHR group. Intraperitoneal injection of cyclophosphamide was performed to create the POF model. Primordial follicular (PDF) number, ovarian wet weight, ovarian index, and estrous cycle were analyzed to evaluate the effect of BHR on POF. Meanwhile, the mRNA and protein level of Mouse Vasa Homologue (MVH) in the bone marrow, peripheral blood and ovary were detected, to explore the underlying mechanism of the treatment efficacy of BHR on ovarian reserve. By the time of BHR treatment for 28 days, BHR increased the PDF number and shortened the estrous cycle of POF mice. BHR also decreased the mRNA level of MVH in the bone marrow, and increased mRNA and protein level of MVH in the ovary of POF mice. Our results demonstrated a treatment efficacy of BHR on POF mice, and revealed that BHR might repair the dysfunction of germline stem cells in the bone marrow, and thus to improve the ovarian reserve and enhance the ovarian function of POF mice through neo-oogenesis.
Animals
;
Bone Marrow
;
drug effects
;
metabolism
;
Cyclophosphamide
;
toxicity
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
administration & dosage
;
Estrous Cycle
;
drug effects
;
Female
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Mice
;
Ovarian Follicle
;
drug effects
;
growth & development
;
Ovarian Reserve
;
drug effects
;
Primary Ovarian Insufficiency
;
chemically induced
;
drug therapy
;
pathology
6.Effects of compound malt pills on expressions of ERα and ERβ in ovaries of rats with letrozole-induced polycystic ovarian syndrome.
Shuang WANG ; Nan LAN ; Yangbojun YANG ; Rong CHEN
Journal of Central South University(Medical Sciences) 2016;41(2):134-142
OBJECTIVE:
To explore the effect of compound malt pills (CMP) on polycystic ovarian syndrome (PCOS) rat model induced by letrozole and the underlying mechanisms.
METHODS:
To establish a PCOS rat model, 48 female SD rats aged 6 weeks were randomly divided into 6 groups (n=8): A normal group, a model control group, a positive control group, a low-dose CMP group, a middle-dose CMP group, and a high-dose CMP group. Rats were treated for 21 days after the PCOS model was successfully established. Ovarian morphology changes were observed, and the expressions of ERα and ERβ was examined by immunohistochemistry, Western blot and RT-PCR, respectively.
RESULTS:
Compared with the normal group, the number of follicular cystic dilatation in the model control group was increased and the granulosa cells were decreased. After the treatment, the number of follicular cystic dilatation was reduced compared with the model control group, but the primordial follicles, corpus luteum and granulosa cells were increased. The expressions of ERα and ERβ in the model control group were significantly decreased (P<0.01), which were increased in the intervention groups (P<0.05 or P<0.01).
CONCLUSION
CMP may play a role in the treatment of PCOS by regulating the expressions of ERα and ERβ.
Animals
;
Corpus Luteum
;
drug effects
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
Estrogen Receptor alpha
;
metabolism
;
Estrogen Receptor beta
;
metabolism
;
Female
;
Granulosa Cells
;
drug effects
;
Letrozole
;
Nitriles
;
adverse effects
;
Ovarian Follicle
;
drug effects
;
Polycystic Ovary Syndrome
;
chemically induced
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Triazoles
;
adverse effects
7.Effect of Antifreeze Protein on Mouse Ovarian Tissue Cryopreservation and Transplantation.
Jung Ryeol LEE ; Hye Won YOUM ; Hee Jun LEE ; Byung Chul JEE ; Chang Suk SUH ; Seok Hyun KIM
Yonsei Medical Journal 2015;56(3):778-784
PURPOSE: To investigate the effect of antifreeze protein (AFP) supplementation on ovarian vitrification and transplantation. MATERIALS AND METHODS: In this experimental study, we researched a total of 182 ovaries from 4-week-old ICR mice. The equilibration solution included 20% ethylene glycol (EG), and the vitrification solution included 40% EG, 18% Ficoll, and 0.3 M sucrose. Intact ovaries were first suspended in 1 mL of equilibration solution for 10 min, and then mixed with 0.5 mL of vitrification solution for 5 min. Ovaries were randomly assigned to 3 groups and 0, 5, or 20 mg/mL of type III AFP was added into the vitrification solution (control, AFP5, and AFP20 groups, respectively). The vitrified ovaries were evaluated after warming and 2 weeks after autotransplantation. The main outcome measurements are follicular morphology and apoptosis assessed by histology and the TUNEL assay. RESULTS: A significantly higher intact follicle ratio was shown in the AFP treated groups (control, 28.9%; AFP5, 42.3%; and AFP20, 44.7%). The rate of apoptotic follicles was significantly lower in the AFP treated groups (control, 26.6%; AFP5, 18.7%; and AFP20, 12.6%). After transplantation of the vitrified-warmed ovaries, a significantly higher intact follicle ratio was shown in the AFP20 group. The rate of apoptotic follicles was similar among the groups. CONCLUSION: The results of the present study suggest that supplementing AFP in the vitrification solution has beneficial effects on the survival of ovarian tissue during cryopreservation and transplantation.
Animals
;
Antifreeze Proteins/*pharmacology
;
Apoptosis/drug effects
;
Cryopreservation/*methods
;
Cryoprotective Agents/*pharmacology
;
Female
;
Fertility Preservation
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Ovarian Follicle/drug effects
;
Ovary/*drug effects/*transplantation
;
*Vitrification
8.High levels of testosterone inhibit ovarian follicle development by repressing the FSH signaling pathway.
Tao LIU ; Yu-qian CUI ; Han ZHAO ; Hong-bin LIU ; Shi-dou ZHAO ; Yuan GAO ; Xiao-li MU ; Fei GAO ; Zi-jiang CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):723-729
The effect of high concentrations of testosterone on ovarian follicle development was investigated. Primary follicles and granulosa cells were cultured in vitro in media supplemented with a testosterone concentration gradient. The combined effects of testosterone and follicle-stimulating hormone (FSH) on follicular growth and granulosa cell gonadotropin receptor mRNA expression were also investigated. Follicle growth in the presence of high testosterone concentrations was promoted at early stages (days 1-7), but inhibited at later stage (days 7-14) of in vitro culture. Interestingly, testosterone-induced follicle development arrest was rescued by treatment with high concentrations of FSH (400 mIU/mL). In addition, in cultured granulosa cells, high testosterone concentrations induced cell proliferation, and increased the mRNA expression level of FSH receptor (FSHR), and luteinized hormone/choriogonadotropin receptor. It was concluded that high concentrations of testosterone inhibited follicle development, most likely through regulation of the FSH signaling pathway, although independently from FSHR downregulation. These findings are an important step in further understanding the pathogenesis of polycystic ovary syndrome.
Androgens
;
pharmacology
;
Animals
;
Cell Proliferation
;
drug effects
;
Female
;
Follicle Stimulating Hormone
;
genetics
;
metabolism
;
pharmacology
;
Gene Expression Regulation, Developmental
;
Granulosa Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Ovarian Follicle
;
cytology
;
drug effects
;
growth & development
;
metabolism
;
Primary Cell Culture
;
RNA, Messenger
;
genetics
;
metabolism
;
Receptors, FSH
;
genetics
;
metabolism
;
Receptors, Gonadotropin
;
genetics
;
metabolism
;
Receptors, LH
;
genetics
;
metabolism
;
Signal Transduction
;
drug effects
;
genetics
;
Testosterone
;
antagonists & inhibitors
;
pharmacology
9.Granulocyte-colony stimulating factor decreases the extent of ovarian damage caused by cisplatin in an experimental rat model.
Ali AKDEMIR ; Burak ZEYBEK ; Levent AKMAN ; Ahment Mete ERGENOGLU ; Ahmet Ozgur YENIEL ; Oytun ERBAS ; Altug YAVASOGLU ; Mustafa Cosan TEREK ; Dilek TASKIRAN
Journal of Gynecologic Oncology 2014;25(4):328-333
OBJECTIVE: To investigate whether granulocyte-colony stimulating factor (G-CSF) can decrease the extent of ovarian follicle loss caused by cisplatin treatment. METHODS: Twenty-one adult female Sprague-Dawley rats were used. Fourteen rats were administered 2 mg/kg/day cisplatin by intraperitoneal injection twice per week for five weeks (total of 20 mg/kg). Half of the rats (n=7) were treated with 1 mL/kg/day physiological saline, and the other half (n=7) were treated with 100 microg/kg/day G-CSF. The remaining rats (n=7, control group) received no therapy. The animals were then euthanized, and both ovaries were obtained from all animals, fixed in 10% formalin, and stored at 4degrees C for paraffin sectioning. Blood samples were collected by cardiac puncture and stored at -30degrees C for hormone assays. RESULTS: All follicle counts (primordial, primary, secondary, and tertiary) and serum anti-Mullerian hormone levels were significantly increased in the cisplatin+G-CSF group compared to the cisplatin+physiological saline group. CONCLUSION: G-CSF was beneficial in decreasing the severity of follicle loss in an experimental rat model of cisplatin chemotherapy.
Animals
;
Anti-Mullerian Hormone/blood
;
Antineoplastic Agents/*toxicity
;
Biological Markers/blood
;
Cisplatin/*toxicity
;
Disease Models, Animal
;
Drug Evaluation, Preclinical/methods
;
Female
;
Fertility Preservation/methods
;
Granulocyte Colony-Stimulating Factor/*therapeutic use
;
Ovarian Follicle/drug effects/pathology
;
Primary Ovarian Insufficiency/blood/chemically induced/pathology/*prevention & control
;
Rats, Sprague-Dawley
10.Effect of Yangjing Zhongyu Decoction on mRNA and protein expression of PCNA, StAR, and FSHR in ovarian granulosa cells cultured by excess androgen.
Yan-Hua ZHENG ; Tao DING ; Hong-Xia MA ; Dan-Feng YE ; Nian-Jun SU ; Xiao-Ke WU
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(3):312-316
OBJECTIVETo observe the effect of Yangjing Zhongyu Decoction (YZD) on mRNA and protein expression of PCNA, StAR, and FSHR in ovarian granulose cells (GCs) cultured by excess androgen.
METHODSOvarian GCs from porcine follicles were isolated and cultured in vitro. Follicular stimulating hormone (FSH) or YZD was added in the GCs treated by excess testosterone propionate. Totally 48 h later mRNA and protein expression of PCNA, StAR, and FSHR were detected by RT-PCR and Western blot.
RESULTSExcess androgen inhibited mRNA and protein expression of PCNA, StAR, and FSHR of GCs. FSH and YZD could antagonize inhibition of excess androgens, and promote mRNA and protein expression of PCNA, StAR, and FSHR in GCs.
CONCLUSIONYZD could antagonize the inhibition of excess androgen on mRNA and protein expression of PCNA, StAR and FSHR in GCs. Thus, we inferred that YZD could improve the follicle dysplasia by promoting mRNA and protein expression of PCNA, StAR and FSHR in GCs.
Androgens ; pharmacology ; Animals ; Cells, Cultured ; Drugs, Chinese Herbal ; pharmacology ; Female ; Follicle Stimulating Hormone ; pharmacology ; Granulosa Cells ; cytology ; drug effects ; metabolism ; Membrane Transport Proteins ; genetics ; metabolism ; Ovarian Follicle ; cytology ; drug effects ; Proliferating Cell Nuclear Antigen ; genetics ; metabolism ; RNA, Messenger ; genetics ; Receptors, FSH ; genetics ; metabolism ; Swine

Result Analysis
Print
Save
E-mail