1.Improvement effect of Shegan Mahuang Decoction on rats with cold-induced asthma based on TRPV1/NRF-1/mtTFA pathway.
Qiu-Hui LI ; Xiao-Xiao SHAN ; Xiao-Ying LIU ; Wei-Dong YE ; Ya-Mei YUAN ; Xun-Yan YIN ; Xiang-Ming FANG
China Journal of Chinese Materia Medica 2023;48(23):6414-6422
This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.
Rats
;
Male
;
Animals
;
Mice
;
Interleukin-4/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Rats, Sprague-Dawley
;
Asthma/genetics*
;
Lung
;
Bronchoalveolar Lavage Fluid
;
RNA, Messenger/metabolism*
;
Collagen/metabolism*
;
Mucins/therapeutic use*
;
Ovalbumin
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
TRPV Cation Channels/metabolism*
;
Drugs, Chinese Herbal
2.Changes in percentage of GATA3+ regulatory T cells and their pathogenic roles in allergic rhinitis.
Liu SUN ; Wo Er JIAO ; Yong Kong KONG ; Chang Liang YANG ; Shan XU ; Yue Long QIAO ; Shi Ming CHEN
Journal of Southern Medical University 2023;43(2):280-286
OBJECTIVE:
To investigate the changes in percentage of GATA3+ regulatory T (Treg) cells in patients with allergic rhinitis (AR) and mouse models.
METHODS:
The nasal mucosa specimens were obtained from 6 AR patients and 6 control patients for detection of nasal mucosal inflammation. Peripheral blood mononuclear cells (PBMC) were collected from 12 AP patients and 12 control patients to determine the percentages of Treg cells and GATA3+ Treg cells. In a C57BL/6 mouse model of AR, the AR symptom score, peripheral blood OVA-sIgE level, and nasal mucosal inflammation were assessed, and the spleen of mice was collected for detecting the percentages of Treg cells and GATA3+ Treg cells and the expressions of Th2 cytokines.
RESULTS:
Compared with the control patients, AR patients showed significantly increased eosinophil infiltration and goblet cell proliferation in the nasal mucosa (P < 0.01) and decreased percentages of Treg cells and GATA3+ Treg cells (P < 0.05). The mouse models of AR also had more obvious allergic symptoms, significantly increased OVA-sIgE level in peripheral blood, eosinophil infiltration and goblet cell hyperplasia (P < 0.01), markedly lowered percentages of Treg cells and GATA3+ Treg cells in the spleen (P < 0.01), and increased expressions of IL-4, IL-6 and IL-10 (P < 0.05).
CONCLUSION
The percentage of GATA3+ Treg cells is decreased in AR patients and mouse models. GATA3+ Treg cells possibly participate in Th2 cell immune response, both of which are involved in the occurrence and progression of AR, suggesting the potential of GATA3+ Treg cells as a new therapeutic target for AR.
Animals
;
Mice
;
Cytokines/metabolism*
;
Disease Models, Animal
;
GATA3 Transcription Factor
;
Inflammation
;
Leukocytes, Mononuclear/metabolism*
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Nasal Mucosa/metabolism*
;
Ovalbumin
;
Rhinitis, Allergic/therapy*
;
T-Lymphocytes, Regulatory
;
Th2 Cells/metabolism*
;
Humans
3.Mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination in treatment of bronchial asthma based on network pharmacology and experimental verification.
Bei-Bei ZHANG ; Meng-Nan ZENG ; Qin-Qin ZHANG ; Ru WANG ; Ju-Fang JIA ; Peng-Li GUO ; Meng LIU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2022;47(18):4996-5007
This study aims to investigate mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination(MT) in the treatment of bronchial asthma based on network pharmacology and in vivo experiment, which is expected to lay a theoretical basis for clinical application of the combination. First, the potential targets of MT in the treatment of bronchial asthma were predicted based on network pharmacology, and the "Chinese medicine-active component-target-pathway-disease" network was constructed, followed by Gene Oncology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the potential targets. Molecular docking was used to determine the binding activity of key candidate active components to hub genes. Ovalbumin(OVA, intraperitoneal injection for sensitization and nebulization for excitation) was used to induce bronchial asthma in rats. Rats were classified into control group(CON), model group(M), dexamethasone group(DEX, 0.075 mg·kg~(-1)), and MT(1∶1.5) group. Hematoxylin and eosin(HE), Masson, and periodic acid-Schiff(PAS) staining were performed to observe the effect of MT on pathological changes of lungs and trachea and goblet cell proliferation in asthma rats. The levels of transforming growth factor(TGF)-β1, interleukin(IL)6, and IL10 in rat serum were detected by enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein levels of mitogen-activated protein kinase 8(MAPK8), cyclin D1(CCND1), IL6, epidermal growth factor receptor(EGFR), phosphatidylinositol 3-kinase(PI3 K), and protein kinase B(Akt) by qRT-PCR and Western blot. Network pharmacology predicted that MAPK8, CCND1, IL6, and EGFR were the potential targets of MT in the treatment of asthma, which may be related to PI3 K/Akt signaling pathway. Quercetin and β-sitosterol in MT acted on a lot of targets related to asthma, and molecular docking results showed that quercetin and β-sitosterol had strong binding activity to MAPK, PI3 K, and Akt. In vivo experiment showed that MT could effectively alleviate the symptoms of OVA-induced asthma rats, improve the pathological changes of lung tissue, reduce the production of goblet cells, inhibit the inflammatory response of asthma rats, suppress the expression of MAPK8, CCND1, IL6, and EGFR, and regulate the PI3 K/Akt signaling pathway. Therefore, MT may relieve the symptoms and inhibit inflammation of asthma rats by regulating the PI3 K/Akt signaling pathway, and quercetin and β-sitosterol are the candidate active components.
Animals
;
Asthma/drug therapy*
;
Cyclin D1
;
Dexamethasone/adverse effects*
;
Drug Combinations
;
Drugs, Chinese Herbal/therapeutic use*
;
Eosine Yellowish-(YS)/adverse effects*
;
Ephedra
;
ErbB Receptors
;
Hematoxylin/therapeutic use*
;
Interleukin-10
;
Interleukin-6
;
Mitogen-Activated Protein Kinase 8/therapeutic use*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Ovalbumin/adverse effects*
;
Periodic Acid/adverse effects*
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quercetin
;
RNA, Messenger
;
Rats
4.Intervention effect of Jingfang Mixture on urticaria mice based on NF-κB/NLRP3/IL-1β signaling pathway.
Shi-Rong LI ; Xi-Shuang WANG ; Guo-Liang CHENG ; Cheng-Hong SUN ; Yan-Fang LI ; Ru-Jing YUE ; Zhen ZENG ; Jing-Chun YAO
China Journal of Chinese Materia Medica 2022;47(20):5467-5472
This study explored the curative effect of Jingfang Mixture on urticaria mice induced by aluminum hydroxide/ovalbumin, and discussed its mechanism. Sixty male Kunming mice were randomly divided into a normal group, a model group, three Jingfang Mixture(low-dose, medium-dose, and high-dose) groups, and a positive drug(cetirizine hydrochloride) group. The urticarial model in mice was induced by the intraperitoneal injection of the mixed solution of ovalbumin and aluminum hydroxide. The degrees of pruritus were observed after the second immunization. Pathological changes were detected by hematoxylin and eosin(HE) staining. Levels of interleukin 1β(IL-1β) and tumor necrosis factor α(TNF-α) in the serum were detected by enzyme linked immunosorbent assay(ELISA). Expressions of NOD-like receptor protein 3(NLRP3) and IL-1β were detected by immunohistochemistry(IHC). Expressions of nuclear factor kappa-B(NF-κB p65), NLRP3, apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate-specific proteases 1(caspase-1), and IL-1β proteins were detected by Western blot. The results showed that, except for the normal group, the mice in all groups had different degrees of pruritus. Compared with the model group, the Jingfang Mixture groups and the positive drug group prolonged the scratching latency of mice(P<0.05), and significantly reduced the number of scratching(P<0.05). In addition, the Jingfang Mixture groups and the positive drug group improved the pathological morphology of skin tissue. The expression levels of IL-1β and TNF-α in serum were significantly reduced(P<0.05), and the number of NLRP3 and IL-1β positive cells was decreased(P<0.01). The expressions of p-NF-κB p65, NLRP3, ASC, cleaved caspase-1, and IL-1β protein were significantly down-regulated(P<0.05). The results of the above study indicate that Jingfang Mixture inhibit the inflammatory response in urticaria mice, and the mechanism may be related to the inhibition of activating NF-κB/NLRP3/IL-1β signaling pathway.
Animals
;
Male
;
Mice
;
NF-kappa B/metabolism*
;
Interleukin-1beta/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ovalbumin
;
Aluminum Hydroxide/pharmacology*
;
Signal Transduction
;
Caspase 1/metabolism*
;
Urticaria
;
Pruritus
5.Effect of Maxing Shigan Decoction and dissembled prescriptions against airway inflammation in RSV-aggravated asthma and mechanism of regulating TRPV1.
Meng-Wen LI ; Xin-Sheng FAN ; Li-Ping ZHOU ; Mo LIU ; Er-Xin SHANG
China Journal of Chinese Materia Medica 2022;47(21):5872-5881
This study investigated the effect of Maxing Shigan Decoction(MXSGD) and its disassembled prescriptions against the airway inflammation in respiratory syncytial virus(RSV)-aggravated asthma and the regulation of transient receptor potential vanilloid-1(TRPV1). To be specific, ovalbumin(OVA) and RSV were used to induce aggravated asthma in mice(female, C57BL/6). Then the model mice were intervened by MXSGD and the disassembled prescriptions. The eosinophil(EOS) in peripheral blood, inflammatory cells in bronchoalveolar lavage fluid(BALF), enhanced pause(Penh) variation, and lung pathological damage in each group were observed, and the changes of interleukin(IL)-4, IL-13, substance P(SP), and prostaglandin E2(PGE2) in BALF were mea-sured by enzyme-linked immunosorbent assay(ELISA). Quantitative real time polymerase chain reaction(qPCR) and Western blot were used to detect mRNA and protein of TRPV1 in mouse lung tissue. In the in vitro experiment, 16 HBE cells were stimulated with IL-4 and RSV. Then the changes of TRPV1 expression after the intervention with the serum containing MXSGD and its disassembled prescriptions were observed. Besides, the intracellular Ca~(2+) level after the stimulation with TRPV1 agonist was evaluated. The results showed that the mice in the model group had obvious asthma phenotype, the levels of various inflammatory cells in the peripheral blood and BALF and Penh were significantly increased(P<0.05, P<0.01), and the lung tissue was severely damaged compared with the control group. Compared with the model group, the levels of EOS in the peripheral blood and BALF were significantly decreased in the MXSGD group, the SG group and the MXC group(P<0.05, P<0.01). The levels of WBC and neutrophils in BALF were significantly decreased in the MXSGD group and SG group(P<0.01), the levels of neutrophils in BALF were decreased in the MXC group(P<0.05). The improvement effect of the MXGSD on the level of inflammatory cells in peripheral blood and BALF was better than that of two disassembled groups(P<0.05, P<0.01). After 50 mg·mL~(-1) acetylcholine chloride stimulation, the Penh values of the MXSGD group and the MXC group significantly decreased(P<0.01), and the Penh value of the SG group decreased(P<0.05). The levels of IL-4, IL-13, PGE2 and SP in BALF could be significantly decreased in the MXSGD group(P<0.05, P<0.01), the levels of IL-13 and PGE2 in BALF could be decreased in the MXC group(P<0.05, P<0.01), and the levels of IL-13, PGE2 and SP in BALF could be decreased in the SG group(P<0.05, P<0.01). MXSGD could down-regulate the protein and mRNA expression of TRPV1 in lung tissue(P<0.05, P<0.01). The serum containing MXSGD and its disassembled prescriptions could down-regulate TRPV1 expression in 16 HBE cells stimulated by IL-4 combined with RSV and inhibit the inward flow of Ca~(2+) induced by TRPV1 agonist, especially the serum containing MXSGD which showed better effect than the serum containing disassembled ones(P<0.05). In vivo and in vitro experiments verified the protective effect of MXSGD and its disassembled prescriptions against airway inflammation in RSV-exacerbated asthma, the whole decoction thus possessed synergy in treating asthma, with better performance than the dissembled prescriptions. Different groups of prescription had made contributions in improving airway hyperresponsiveness, anti-allergy and anti-inflammation. The mechanism is the likelihood that it regulates TRPV1 channel and levels of related inflammatory mediators.
Female
;
Mice
;
Animals
;
Interleukin-13/metabolism*
;
Interleukin-4/metabolism*
;
Dinoprostone
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Asthma/chemically induced*
;
Lung
;
Bronchoalveolar Lavage Fluid
;
Ovalbumin/adverse effects*
;
Inflammation/metabolism*
;
RNA, Messenger/metabolism*
;
Prescriptions
;
Disease Models, Animal
;
TRPV Cation Channels/metabolism*
6.Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation.
Fei-Peng DUAN ; Yi-Sheng LI ; Tian-Yong HU ; Xin-Quan PAN ; Fang MA ; Yue FENG ; Shu-Qi QIU ; Yi-Qing ZHENG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(6):443-457
Antibiotic exposure-induced dysbiosis of the intestinal flora increases the risk of developing allergic rhinitis. Hence, regulating the balance of intestinal flora may be useful for preventing and treating allergic rhinitis. However, the underlying mechanism is unclear. Dendrobium nobile (Shihu) exhibits anti-inflammatory and immune activities. Hence, in this study, we investigated the mechanism via which Shihu may improve allergic rhinitis. Mouse models of allergic rhinitis with intestinal flora dysbiosis (Model-D, antibiotics induce intestinal flora dysbiosis with ovalbumin-induced allergy) and normal intestinal flora with allergic rhinitis (Model-N, ovalbumin-induced allergy) were established. The effect of Shihu on intestinal flora and inflammation caused during allergic rhinitis were analyzed. Allergic symptoms, infiltration of hematoxylin and eosin in the lungs and nose, and the release of various factors [interleukin (IL)-2, IL-4, IFN-γ, IL-6, IL-10, and IL-17] in the lungs were evaluated. The results indicate that intestinal flora dysbiosis exacerbated lung and nose inflammation in allergic rhinitis. However, treatment with the Shihu extract effectively reversed these symptoms. Besides, the Shihu extract inhibited the PI3K/AKT/mTOR pathway and increased the level of Forkhead box protein in the lungs. Additionally, the Shihu extract reversed intestinal flora dysbiosis at the phylum and genus levels and improved regulator T cell differentiation. Furthermore, in the Model-D group, the Shihu extract inhibited the decrease in the diversity and abundance of the intestinal flora. Screening was performed to determine which intestinal flora was positively correlated with Treg differentiation using Spearman's correlation analysis. In conclusion, we showed that Shihu extract restored the balance in intestinal flora and ameliorated inflammation in the lungs of allergic rhinitis mice and predicted a therapeutic new approach using Traditional Chinese Medicine to improve allergic rhinitis.
Animals
;
Cytokines/metabolism*
;
Dendrobium
;
Disease Models, Animal
;
Drugs, Chinese Herbal/pharmacology*
;
Dysbiosis/drug therapy*
;
Gastrointestinal Microbiome
;
Inflammation/drug therapy*
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin
;
Phosphatidylinositol 3-Kinases
;
Pneumonia
;
Rhinitis, Allergic/metabolism*
7.Effects of NLRP3-mediated pyroptosis on olfaction dysfunction in allergic rhinitis.
Fang Wei ZHOU ; Tian ZHANG ; Ying JIN ; Yi Fei MA ; Zhi Peng XIAN ; Zhi Min WU ; Guo Dong YU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):433-441
Objective: To explore the relationship between NLRP3-mediated pyroptosis and olfactory dysfunction (OD) in allergic rhinitis (AR), and to evaluate the therapeutic potential of CY-09, a selective NLRP3 inhibitor for OD. Methods: An AR mouse model was established with ovalbumin, and the olfactory function of AR mice was detected by the buried food pellet test. Mice with OD were intraperitoneally injected with CY-09 or saline. The activation of microglia and astrocytes in olfactory bulb was detected by immunohistochemistry. The expression level of pyroptosis associated protein was detected by Western blot. The level of pyroptosis associated proinflammatory factor mRNA was determined by real-time PCR. SPSS 24.0 software was used for statistical analysis. Results: After the test, ovalbumin successfully established AR mice model, in which 52.5% (21/40) of them showed OD. The number of activated microglia and astroglia in olfactory bulb tissue in OD group were more than those in non-OD group (all P<0.05). Compared with the control group, the expression of NLRP3, caspase-1 and gasdermin D (GSDMD) was significantly increased in the olfactory bulb of the OD group (all P<0.05). CY-09 could significantly reduce the level of NLRP3, caspase-1, GSDMD, IL-1β and IL-18 expression, and inhibite the activation of microglia and astrocytes in the olfactory bulb tissues (all P<0.05). Conclusion: NLRP3-mediated pyroptosis is closely related to the OD associated with AR. CY-09 could improve the olfactory function in AR mice, which may be related to blocking the NLRP3-mediated pyroptosis.
Animals
;
Caspases/therapeutic use*
;
Disease Models, Animal
;
Humans
;
Inflammasomes/therapeutic use*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Ovalbumin
;
Pyroptosis
;
Rhinitis, Allergic/drug therapy*
;
Smell
8.Experimental study of dopamine ameliorating the inflammatory damage of olfactory bulb in mice with allergic rhinitis.
Pei Qiang LIU ; Dan Xue QIN ; Hao LYU ; Wen Jun FAN ; Zi Ang GAO ; Ze Zhang TAO ; Yu XU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):442-451
Objective: To investigate the effects of dopamine on olfactory function and inflammatory injury of olfactory bulb in mice with allergic rhinitis (AR). Methods: AR mouse model was established by using ovalbumin (OVA), and the mice were divided into two groups: olfactory dysfunction (OD) group and without OD group through buried food pellet test (BFPT). The OD mice were randomly divided into 2 groups, and OVA combined with dopamine (3, 6, 9 and 12 days, respectively) or OVA combined with an equal amount of PBS (the same treatment time) was administered nasally. The olfactory function of mice was evaluated by BFPT. The number of eosinophils and goblet cells in the nasal mucosa were detected by HE and PAS staining. Western blotting, immunohistochemistry or immunofluorescence were used to detect the expression of olfactory marker protein (OMP) in olfactory epithelium, the important rate-limiting enzyme tyrosine hydroxylase (TH) of dopamine, and the marker proteins glial fibrillary acidic protein (GFAP) and CD11b of glial cell in the olfactory bulb. TUNEL staining was used to detect the damage of the olfactory bulb. SPSS 26.0 software was used for statistical analysis. Results: AR mice with OD had AR pathological characteristics. Compared with AR mice without OD, the expression of OMP in olfactory epithelium of AR mice with OD was reduced (F=26.09, P<0.05), the expression of GFAP and CD11b in the olfactory bulb was increased (F value was 38.95 and 71.71, respectively, both P<0.05), and the expression of TH in the olfactory bulb was decreased (F=77.00, P<0.05). Nasal administration of dopamine could shorten the time of food globule detection in mice to a certain extent, down-regulate the expression of GFAP and CD11b in the olfactory bulb (F value was 6.55 and 46.11, respectively, both P<0.05), and reduce the number of apoptotic cells in the olfactory bulb (F=25.64, P<0.05). But dopamine had no significant effect on the number of eosinophils and goblet cells in nasal mucosa (F value was 36.26 and 19.38, respectively, both P>0.05), and had no significant effect on the expression of OMP in the olfactory epithelium (F=55.27, P>0.05). Conclusion: Dopamine can improve olfactory function in mice with AR to a certain extent, possibly because of inhibiting the activation of glial cells in olfactory bulb and reducing the apoptotic injury of olfactory bulb cells.
Animals
;
Disease Models, Animal
;
Dopamine
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Nasal Mucosa/metabolism*
;
Olfactory Bulb/pathology*
;
Ovalbumin
;
Rhinitis, Allergic/metabolism*
9.Effects of honokiol on particulate matter 2.5-induced lung injury in asthmatic mice and its mechanisms.
Jiali XU ; Xiaoxia LU ; Feng HAN
Journal of Central South University(Medical Sciences) 2018;43(7):718-724
To explore the therapeutic effect of honokiol on particulate matter 2.5 (PM2.5)-induced lung injury in asthmatic mice and the possible mechanisms.
Methods: A total of 32 BALB/C mice were randomly divided into four groups: a normal saline group, a model group, a PM2.5 group and a honokiol group (n=8 in each group). The asthma mouse model was established by ovalbumin treatment. The mice were treated with physiological saline, ovalbumin, PM2.5 and honokiol, respectively. Lung tissues and serum were collected. The pathological changes of lung tissues were evaluated. The levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were measured and the expressions of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), retinoid-related orphan receptor gamma-t (RORγt) and forkhead box protein 3 (Foxp3) in lung tissues were detected.
Results: 1) The lung tissues of mice in the asthma group showed obvious pathological changes and inflammatory state, suggesting that the asthma model was established successfully. PM2.5 could aggravate the pathological condition of inflammatory injury in lung tissues in asthmatic mice. 2) Compared to the PM2.5 group, the pathological symptoms in the lung tissues were alleviated in the honokiol group and the percentage of inflammatory cells in BALF and the levels of inflammatory cytokines in BALF and serum were significantly reduced (all P<0.05). 3) Compared to the PM2.5 group, the expressions of TLR4, NF-κB (p-p65) and RORγt in lung tissues were significantly decreased, while the expression of Foxp3 was increased; the ratio of RORγt/Foxp3 was also decreased in the honokiol group (all P<0.05).
Conclusion: Honokiol can resist lung injury induced by PM2.5 in asthmatic mice. These effects are through inhibiting TLR4-NF-κB pathway-mediated inflammatory response or regulating the balance of Th17/Treg cells.
Animals
;
Asthma
;
chemically induced
;
complications
;
Biphenyl Compounds
;
pharmacology
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
Cytokines
;
analysis
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
Inflammation Mediators
;
analysis
;
Lignans
;
pharmacology
;
Lung
;
metabolism
;
pathology
;
Lung Injury
;
drug therapy
;
etiology
;
metabolism
;
pathology
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B
;
metabolism
;
Ovalbumin
;
Particulate Matter
;
toxicity
;
Random Allocation
;
Toll-Like Receptor 4
;
metabolism
10.Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma.
Hwa Young LEE ; Chin Kook RHEE ; Ji Young KANG ; Chan Kwon PARK ; Sook Young LEE ; Soon Suk KWON ; Young Kyoon KIM ; Hyoung Kyu YOON
The Korean Journal of Internal Medicine 2016;31(1):89-97
BACKGROUND/AIMS: Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. METHODS: We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. RESULTS: Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-kappaB. CONCLUSIONS: These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-kappaB pathways.
Actins/metabolism
;
Administration, Inhalation
;
Airway Remodeling/*drug effects
;
Animals
;
Anti-Asthmatic Agents/*administration & dosage
;
Asthma/chemically induced/*drug therapy/metabolism/physiopathology
;
Chronic Disease
;
Collagen/metabolism
;
Disease Models, Animal
;
Female
;
Lung/*drug effects/metabolism/physiopathology
;
Mice, Inbred BALB C
;
NF-kappa B/metabolism
;
Ovalbumin
;
PPAR gamma/agonists/metabolism
;
Pneumonia/chemically induced/physiopathology
;
Pulmonary Eosinophilia/chemically induced/prevention & control
;
Signal Transduction/drug effects
;
Thiazolidinediones/*administration & dosage
;
Toll-Like Receptor 4/metabolism

Result Analysis
Print
Save
E-mail