1.Establishment of different pneumonia mouse models suitable for traditional Chinese medicine screening.
Xing-Nan YUE ; Jia-Yin HAN ; Chen PAN ; Yu-Shi ZHANG ; Su-Yan LIU ; Yong ZHAO ; Xiao-Meng ZHANG ; Jing-Wen WU ; Xuan TANG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(15):4089-4099
In this study, lipopolysaccharide(LPS), ovalbumin(OVA), and compound 48/80(C48/80) were administered to establish non-infectious pneumonia models under simulated clinical conditions, and the correlation between their pathological characteristics and traditional Chinese medicine(TCM) syndromes was compared, providing the basis for the selection of appropriate animal models for TCM efficacy evaluation. An acute pneumonia model was established by nasal instillation of LPS combined with intraperitoneal injection for intensive stimulation. Three doses of OVA mixed with aluminum hydroxide adjuvant were injected intraperitoneally on days one, three, and five and OVA was administered via endotracheal drip for excitation on days 14-18 to establish an OVA-induced allergic pneumonia model. A single intravenous injection of three doses of C48/80 was adopted to establish a C48/80-induced pneumonia model. By detecting the changes in peripheral blood leukocyte classification, lung tissue and plasma cytokines, immunoglobulins(Ig), histamine levels, and arachidonic acid metabolites, the multi-dimensional analysis was carried out based on pathological evaluation. The results showed that the three models could cause pulmonary edema, increased wet weight in the lung, and obvious exudative inflammation in lung tissue pathology, especially for LPS. A number of pyrogenic cytokines, inclading interleukin(IL)-6, interferon(IFN)-γ, IL-1β, and IL-4 were significantly elevated in the LPS pneumonia model. Significantly increased levels of prostacyclin analogs such as prostaglandin E2(PGE2) and PGD2, which cause increased vascular permeability, and neutrophils in peripheral blood were significantly elevated. The model could partly reflect the clinical characteristics of phlegm heat accumulating in the lung or dampness toxin obstructing the lung. The OVA model showed that the sensitization mediators IgE and leukotriene E4(LTE4) were increased, and the anti-inflammatory prostacyclin 6-keto-PGF2α was decreased. Immune cells(lymphocytes and monocytes) were decreased, and inflammatory cells(neutrophils and basophils) were increased, reflecting the characteristics of "deficiency", "phlegm", or "dampness". Lymphocytes, monocytes, and basophils were significantly increased in the C48/80 model. The phenotype of the model was that the content of histamine, a large number of prostacyclins(6-keto-PGE1, PGF2α, 15-keto-PGF2α, 6-keto-PGF1α, 13,14-D-15-keto-PGE2, PGD2, PGE2, and PGH2), LTE4, and 5-hydroxyeicosatetraenoic acid(5S-HETE) was significantly increased, and these indicators were associated with vascular expansion and increased vascular permeability. The pyrogenic inflammatory cytokines were not increased. The C48/80 model reflected the characteristics of cold and damp accumulation. In the study, three non-infectious pneumonia models were constructed. The LPS model exhibited neutrophil infiltration and elevated inflammatory factors, which was suitable for the efficacy study of TCM for clearing heat, detoxifying, removing dampness, and eliminating phlegm. The OVA model, which took allergic inflammation as an index, was suitable for the efficacy study of Yiqi Gubiao formulas. The C48/80 model exhibited increased vasoactive substances(histamine, PGs, and LTE4), which was suitable for the efficacy study and evaluation of TCM for warming the lung, dispersing cold, drying dampness, and resolving phlegm. The study provides a theoretical basis for model selection for the efficacy evaluation of TCM in the treatment of pneumonia.
Animals
;
Disease Models, Animal
;
Mice
;
Pneumonia/genetics*
;
Medicine, Chinese Traditional
;
Male
;
Humans
;
Cytokines/immunology*
;
Female
;
Lipopolysaccharides/adverse effects*
;
Lung/drug effects*
;
Drugs, Chinese Herbal
;
Ovalbumin
;
Mice, Inbred BALB C
2.Mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice.
Xiao-Hua ZHU ; Qiu-Gen LI ; Jun WANG ; Guo-Zhu HU ; Zhi-Qiang LIU ; Qing-Hua HU ; Gang WU
Chinese Journal of Contemporary Pediatrics 2017;19(12):1278-1284
OBJECTIVETo investigate the molecular mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice.
METHODSA total of 24 mice were randomly divided into control group, ovalbumin (OVA)-induced asthma group (OVA group), and JQ1 intervention group (JQ1+OVA group), with 8 mice in each group. OVA sensitization/challenge was performed to establish a mouse model of asthma. At 1 hour before challenge, the mice in the JQ1+OVA group were given intraperitoneal injection of JQ1 solution (50 μg/g). Bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected at 24 hours after the last challenge, and the total number of cells and percentage of eosinophils in BALF were calculated. Pathological staining was performed to observe histopathological changes in lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression of E-cadherin and vimentin during epithelial-mesenchymal transition (EMT).
RESULTSCompared with the control group, the OVA group had marked infiltration of inflammatory cells in the airway, thickening of the airway wall, increased secretion of mucus, and increases in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the OVA group, the JQ1+OVA group had significantly alleviated airway inflammatory response and significant reductions in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the control group, the OVA group had significant reductions in the mRNA and protein expression of E-cadherin and significant increases in the mRNA and protein expression of vimentin (P<0.01); compared with the OVA group, the JQ1+OVA group had significant increases in the mRNA and protein expression of E-cadherin and significant reductions in the mRNA and protein expression of vimentin (P<0.01); there were no significant differences in these indices between the JQ1+OVA group and the control group (P>0.05).
CONCLUSIONSMice with OVA-induced asthma have airway remodeling during EMT. BET bromodomain inhibitor JQ1 can reduce airway inflammation, inhibit EMT, and alleviate airway remodeling, which provides a new direction for the treatment of asthma.
Airway Remodeling ; drug effects ; Animals ; Asthma ; drug therapy ; Azepines ; pharmacology ; Cadherins ; analysis ; genetics ; Epithelial-Mesenchymal Transition ; Female ; Mice ; Nuclear Proteins ; antagonists & inhibitors ; Ovalbumin ; immunology ; RNA, Messenger ; analysis ; Transcription Factors ; antagonists & inhibitors ; Triazoles ; pharmacology ; Vimentin ; analysis ; genetics
3.Effect of triggering receptor expressed on myeloid cells 2 overexpression on airway inflammation and remodeling in mice with allergic asthma.
Zhen WANG ; Jing WANG ; Wen ZHANG
Chinese Journal of Contemporary Pediatrics 2016;18(9):879-884
OBJECTIVETo investigate the effect of triggering receptor expressed on myeloid cells 2 (TREM-2) overexpression on airway inflammation and remodeling in mice with asthma.
METHODSA total of 40 BALB/c mice were randomly divided into normal control, asthma, empty vector, and TREM-2 overexpression groups (n=10 each). Ovalbumin (OVA) sensitization and challenge were performed to establish the model of asthma. The mice in the control group were given normal saline, and those in the empty vector and TREM-2 overexpression groups were transfected with adenovirus vector and TREM-2 adenovirus, respectively. RT-PCR and Western blot were used to measure the expression of TREM-2, MMP-2, MMP-9, ADAM33, and ADAM8. Bronchoalveolar lavage fluid (BALF) was collected to perform cell counting and classification. ELISA was used to measure the total serum level of IgE and the levels of cytokines in BALF.
RESULTSCompared with the control group, the asthma group showed significant reductions in the mRNA and protein expression of TREM-2 (P<0.05), a significantly increased level of Th2 cytokine (P<0.05), and significantly increased numbers of total cells and classified cells. Compared with the asthma group, the TREM-2 overexpression group showed a significantly reduced level of Th2 cytokine (P<0.05), a significantly reduced level of IgE (P<0.05), and significantly reduced numbers of total cells and classified cells (P<0.05), as well as significantly downregulated expression of the inflammatory factors and growth factors MMP-2, MMP-9, TGF-β1, ADAM8, and ADAM33 (P<0.05).
CONCLUSIONSTREM-2 overexpression significantly alleviates airway inflammation and airway remodeling in mice with asthma and may become a potential target for the prevention and treatment of childhood asthma.
Airway Remodeling ; Animals ; Asthma ; etiology ; immunology ; Cytokines ; analysis ; Female ; Membrane Glycoproteins ; genetics ; physiology ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; immunology ; RNA, Messenger ; analysis ; Receptors, Immunologic ; genetics ; physiology
4.Effect of dexamethasone on osteopontin expression in the lung tissue of asthmatic mice.
Hai-Hui SUN ; Yun-Xiao SHANG ; Nan YANG
Chinese Journal of Contemporary Pediatrics 2014;16(12):1265-1270
OBJECTIVETo study the correlation between airway inflammation and osteopontin (OPN) level in the lung tissue, and to study the effect of dexamethasone (DXM) on OPN expression.
METHODSFifty mice were randomly divided into 5 groups: normal control, ovalbumin (OVA)-challenged asthma groups (OVA inhalation for 1 week or 2 weeks) and DXM-treated asthma groups (DXM treatment for 1 week or 2 weeks). The mice were sensitized and challenged with OVA to prepare mouse model of acute asthma. Alterations of airway inflammation were observed by haematoxylin-eosin staining. Serum level of OVA-sIgE was evaluated using ELISA. OPN expression in the lung tissue was located and measured by immunohistochemistry and Western blot respectively. OPN mRNA level in the lung tissue was detected by real-time PCR.
RESULTSThe asthma groups showed more pathological changes in the airway than the normal control and the DXM-treated groups. Compared with the OVA-challenged 1 week group, the pathological alterations increased in the OVA-challenged 2 weeks group. The level of OVA-sIgE in serum increased in the asthma groups compared with the control and the DXM groups (P<0.01). Serum OVA-sIgE sevel increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01). OPN protein and mRNA levels were significantly raised in the asthma groups compared with the normal control and the DXM groups (P<0.01), and both levels increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01).
CONCLUSIONSThe increased OPN expression in the lung tissue is associated with more severe airway inflammation in asthmatic mice, suggesting that OPN may play an important role in the pathogenesis of asthma. DXM can alleviate airway inflammation possibly by inhibiting OPN production.
Animals ; Asthma ; drug therapy ; metabolism ; pathology ; Dexamethasone ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Female ; Immunoglobulin E ; blood ; Lung ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C ; Osteopontin ; analysis ; genetics ; physiology ; Ovalbumin ; immunology
5.Downregulation of Orai1 expression in the airway alleviates murine allergic rhinitis.
Yi WANG ; Lin LIN ; Chunquan ZHENG
Experimental & Molecular Medicine 2012;44(3):177-190
Orai1 is the key subunit of the Ca2+-release-activated Ca2+ channel. Our previous report has demonstrated that Orai1 expression in the airway was upregulated in the ovalbumin (OVA)-induced allergic rhinitis (AR) mouse models. To observe whether inhibition of Orai1 expression in the airway could suppress symptoms in a murine model of AR and to assess the impacts of this inhibition on the responses of local and systemic immunocytes, we administered recombinant lentivirus vectors that encoded shRNA against ORAI1 (lenti-ORAI1) into the nostrils of OVA-sensitized mice before the challenges, and analyzed its effect on allergic responses, as compared with the unsensitized mice and untreated AR mice. Administration of lenti-ORAI1 into the nasal cavity successfully infected cells in the epithelial layer of the nasal mucosa, and significantly decreased the frequencies of sneezing and nasal rubbing of the mice. Protein levels of leukotriene C4, OVA-specific IgE, and IL-4 in the nasal lavage fluid and serum and eosinophil cation protein in the serum were also significantly reduced by lenti-ORAI1, as were the mRNA levels of these factors in the nasal mucosa and spleen. These data suggested that administration of lenti-ORAI1 into the nasal cavity effectively decreased Orai1 expression in the nasal mucosa, alleviated AR symptoms, and partially inhibited the hyperresponsiveness of the local and systemic immune cells including T cells, B cells, mast cells and eosinophils that are involved in the pathogenesis of AR.
Animals
;
Calcium Channels/analysis/*genetics/immunology
;
*Down-Regulation
;
Eosinophil Cationic Protein/blood/genetics
;
Glutathione Transferase/blood/genetics/immunology
;
Immunoglobulin E/blood/genetics/immunology
;
Interleukin-4/blood/genetics/immunology
;
Lentivirus/genetics
;
Mice
;
Mice, Inbred BALB C
;
Nasal Mucosa/immunology/metabolism
;
Ovalbumin/immunology
;
RNA, Messenger/genetics
;
RNA, Small Interfering/*administration & dosage/genetics
;
Rhinitis, Allergic, Perennial/*genetics/immunology
;
Spleen/immunology/metabolism
;
*Transfection
6.Silencing IL-23 expression by a small hairpin RNA protects against asthma in mice.
Yanchun LI ; Meng SUN ; Huanji CHENG ; Shanyu LI ; Li LIU ; Hongmei QIAO ; Shucheng HUA ; Jirong LU
Experimental & Molecular Medicine 2011;43(4):197-204
To determine the impact of IL-23 knockdown by RNA interference on the development and severity of ovalbumin (OVA)-induced asthmatic inflammation, and the potential mechanisms in mice, the IL-23-specific RNAi-expressing pSRZsi-IL-23p19 plasmid was constructed and inhaled into OVA-sensitized mice before each challenge, as compared with that of control mice treated with alum or budesonide. Inhalation of the pSRZsi-IL-23p19, significantly reduced the levels of OVA-challenge induced IL-23 in the lung tissues by nearly 75%, determined by RT-PCR. In addition, knockdown of IL-23 expression dramatically reduced the numbers of eosinophils and neutrophils in BALF and mitigated inflammation in the lungs of asthmatic mice. Furthermore, knockdown of IL-23 expression significantly decreased the levels of serum IgE, IL-23, IL-17, and IL-4, but not IFNgamma, and its anti-inflammatory effects were similar to or better than that of treatment with budesonide in asthmatic mice. Our data support the notion that IL-23 and associated Th17 responses contribute to the pathogenic process of bronchial asthma. Knockdown of IL-23 by RNAi effectively inhibits asthmatic inflammation, which is associated with mitigating the production of IL-17 and IL-4 in asthmatic mice.
Animals
;
Asthma/chemically induced/genetics/metabolism/*prevention & control
;
Bronchoalveolar Lavage Fluid/cytology
;
Enzyme-Linked Immunosorbent Assay
;
Eosinophils
;
Female
;
Inflammation/metabolism
;
Interleukin-23/*genetics
;
Leukocyte Count
;
Mice
;
Mice, Inbred BALB C
;
Neutrophils
;
Ovalbumin/pharmacology
;
Plasmids/genetics
;
*RNA Interference
;
RNA, Small Interfering/*genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Th17 Cells/immunology
7.Preventive effect of IL-18 gene modified mature dendritic cells vaccine on airway inflammation in mouse asthma model.
Hang YUAN ; Jian-Hua LIU ; Cheng WANG ; He-Quan LI ; Hua-Ying WANG ; Yun ZHENG ; Da-Jing XIA
Journal of Zhejiang University. Medical sciences 2011;40(2):176-183
OBJECTIVETo investigate the preventive effect of interleukin-18 (IL-18) gene modified mature dendritic cells (mDC) vaccine on airway inflammation in mouse asthma model.
METHODSThe asthma model was induced by injection of ovalbumin (OVA) in BALB/c mice. IL-18 gene modified mouse mature dendritic cells (mDC) were detected by flow cytometry and its capacity of inducing allogeneic T cell responses was examined by mixed lymphocyte reaction (MLR). The OVA-induced asthmatic mice were randomly divided into 6 groups: PBS group, DXM group, mDC group, Ad-LacZ-mDC group, Ad-IL-18-mDC group and control group. The pathological changes in lung tissues were assayed by HE and AB-PAS staining. The numbers of inflammatory cells and percentage of eosinophils (EOS) in bronchoalveolar lavage fluid (BALF) were counted. The levels of IFN-γ IL-4 and IL-13 in culture supernatant of splenocytes were measured by ELISA method. The percentage of CD4(+)CD25(+)Foxp3(+) Treg was assessed by flow cytometry analysis.
RESULTThe vaccine was effective in decreasing the infiltration of EOS and accumulation of airway goblet cells in lung tissues, the numbers of inflammatory cells and percentage of EOS in BALF, and the levels of IL-4 and IL-13 in culture supernatant of splenocytes, and in increasing the levels of IFN-γ in culture supernatant of splenocytes and the percentage of CD4(+)CD25(+)foxP3(+) reg.
CONCLUSIONIL-18 gene modified mDC vaccine has a preventive effect on airway inflammation in OVA-induced asthmatic mice.
Animals ; Asthma ; immunology ; pathology ; prevention & control ; Dendritic Cells ; immunology ; Disease Models, Animal ; Genetic Therapy ; Interleukin-18 ; genetics ; Lung ; pathology ; Male ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; immunology
8.Recombinant E. coli LLO/OVA induces murine BMDCs maturation via TLR4 and NOD1 receptor and promotes specific cytotoxic T cell immunity.
Biomedical and Environmental Sciences 2010;23(5):350-356
OBJECTIVETo explore the immune stimulation effect of recombinant E.coli LLO/OVA on mice bone marrow-derived dendritic cells (BMDCs) and T lymphocytes in vitro.
METHODSAfter BMDCs stimulated by E.coli LLO/OVA, their Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) receptor signalling pathway were examined by superarray hybridization; and the priming effect of the vaccine activated BMDCs on CD4(+)T and CD8(+)T was determined by [3H]thymidine uptake and ELISA, the tumor cytotoxic effect of activated CD8(+)T cells was determined by cytotoxic assay.
RESULTSAfter BMDCs were activated by E. coli LLO/OVA via TLR4, NOD1 receptor and NF-κB signalling pathway, the expression of their surface molecules including MHC class I, MHC class II, CD40, CD80 and CD86 significantly up-regulated; the secretion of IL-12 and IFN-γ increased also. The mature BMDCs stimulated the allergic CD4(+)T and CD8(+)T cells proliferation and their IL-2 and IFN-γ secretion, and the activated CD8(+)T cells effectively killed B16-OVA melanoma cells and RMA-S/OVA lymphoma cells in vitro.
CONCLUSIONE.coli LLO/OVA is effective in inducing BMDCs maturation via activating TLR4 and NOD1 receptor signalling pathway and promoting specific anti-tumor T cell immunity in vitro.
Animals ; Antigens, Neoplasm ; genetics ; pharmacology ; Bacterial Toxins ; genetics ; pharmacology ; Cancer Vaccines ; genetics ; pharmacology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; immunology ; Coculture Techniques ; Cytokines ; immunology ; secretion ; Dendritic Cells ; cytology ; drug effects ; immunology ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Escherichia coli ; genetics ; metabolism ; Female ; Flow Cytometry ; Heat-Shock Proteins ; genetics ; pharmacology ; Hemolysin Proteins ; genetics ; pharmacology ; Immunity, Innate ; drug effects ; Mice ; Mice, Inbred C57BL ; Nod1 Signaling Adaptor Protein ; genetics ; physiology ; Ovalbumin ; genetics ; pharmacology ; Recombinant Fusion Proteins ; genetics ; pharmacology ; Reverse Transcriptase Polymerase Chain Reaction ; T-Lymphocytes, Cytotoxic ; drug effects ; immunology ; Toll-Like Receptor 4 ; genetics ; physiology
9.Effects of dexamethasone on intracellular expression of Th17 cytokine interleukin 17 in asthmatic mice.
Si-Ming HU ; Ya-Ling LUO ; Wen-Yan LAI ; Pei-Fen CHEN
Journal of Southern Medical University 2009;29(6):1185-1188
OBJECTIVETo study the effects of dexamethasone on intracellular expression of Th17 cytokine interleukin 17 and the mechanisms in asthmatic mice.
METHODSExperimental asthma was induced by ovalbumin (OVA) sensitization in 20 in female Balb/c mice with (dexamethasone group, n=10) or without dexamethasone treatment (model group, n=10), with another 10 serving as the control group. The levels of IL-17 in the bronchoalveolar lavage fluid (BALF) and serum of the mice were measured by enzyme-linked immunosorbent assay (ELISA), and the airway inflammation was evaluated by HE staining. The expressions of IL-17 and RORgammat mRNA were measured by reverse transcription-polymerase chain reaction (RT-PCR), and the expression of RORgammat protein was measured by immunohistochemical staining.
RESULTSThe levels of RORgammat and IL-17 mRNA and protein in the asthmatic model group were significantly higher than those in the control group (P<0.01), and the increased expressions of RORgammat and IL-17 mRNA and protein in the asthmatic mice were significantly reduced by dexamethasone treatment (P<0.05).
CONCLUSIONDexamethasone can inhibit the release of IL-17 probably by inhibiting RORgammat expression and blocking Th17 differentiation in asthmatic mice.
Animals ; Asthma ; chemically induced ; immunology ; metabolism ; Dexamethasone ; pharmacology ; Female ; Interleukin-17 ; genetics ; metabolism ; Mice ; Mice, Inbred BALB C ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; metabolism ; Ovalbumin ; RNA, Messenger ; biosynthesis ; genetics ; T-Lymphocyte Subsets ; immunology ; metabolism ; T-Lymphocytes, Helper-Inducer ; immunology ; metabolism
10.TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice.
Experimental & Molecular Medicine 2007;39(3):343-352
Asthma was induced by the sensitization and challenge with ovalbumin (OVA) in mice. B-cell activating factor (BAFF) plays a role in mature B cell generation and maintenance. Here, we investigated whether, BAFF expression was changed in OVA-induced mice and whether the control of BAFF expression level alleviates the symptom of bronchial asthma. BAFF expression was detected in alveolar-associated cells surrounding bronchi of OVA-induced mouse lung tissues. BAFF protein was also increased in OVA-induced mouse serum. The increased BAFF transcripts was detected in OVA-induced mouse splenocytes. OVA-induced asthma was associated with the increased number of eosinophils in bronchoalveolar lavage fluid (BALF). When TACI:Fc scavenging soluble BAFF was injected to OVA-induced mice, a significant inhibition was detected in the thickness of airway smooth muscle and glycol-containing cellular elements in airway that were visualized by hematoxylin/eosin Y and periodic acid-Schiff staining, respectively. In addition, when mice were treated with TACI:Fc protein, BAFF protein level was decreased in alveolar-associated cells surrounding bronchi of OVA-induced mouse lung tissues compared to control mice. When compared to OVA-induced control, TACI:Fc treatment reduced the percentage of non-lymphoid cells and no changes were detected in lymphoid cell population. Hypodiploid cell formation in BALF was decreased by OVA-challenge but it was recovered by TACI:Fc treatment. Collectively, data suggest that asthmatic symptom could be alleviated by scavenging BAFF and then BAFF could be a novel target for the develpoment of anti-asthmatic agents.
Animals
;
Apoptosis
;
Asthma/chemically induced/*drug therapy/immunology
;
B-Cell Activating Factor/*biosynthesis
;
Bronchi/metabolism/pathology
;
Bronchoalveolar Lavage Fluid/cytology
;
Eosinophils/pathology
;
Female
;
Humans
;
Immunoglobulin Fc Fragments/*genetics
;
Immunoglobulin G/*genetics
;
Lymphocytes/pathology
;
Mice
;
Mice, Inbred BALB C
;
*Ovalbumin
;
Pulmonary Alveoli/metabolism
;
Recombinant Fusion Proteins/genetics/*therapeutic use
;
Spleen/metabolism
;
Transmembrane Activator and CAML Interactor Protein/*genetics

Result Analysis
Print
Save
E-mail