1.Inhibition of the cGAS‑STING Pathway Reduces Cisplatin-Induced Inner Ear Hair Cell Damage.
Ying SUN ; Shengyu ZOU ; Xiaoxiang XU ; Shan XU ; Haiying SUN ; Mingliang TANG ; Weijia KONG ; Xiong CHEN ; Zuhong HE
Neuroscience Bulletin 2025;41(3):359-373
Although cisplatin is a widely used chemotherapeutic agent, it is severely toxic and causes irreversible hearing loss, restricting its application in clinical settings. This study aimed to determine the molecular mechanism underlying cisplatin-induced ototoxicity. Here, we established in vitro and in vivo ototoxicity models of cisplatin-induced hair cell loss, and our results showed that reducing STING levels decreased inflammatory factor expression and hair cell death. In addition, we found that cisplatin-induced mitochondrial dysfunction was accompanied by cytosolic DNA, which may act as a critical linker between the cyclic GMP-AMP synthesis-stimulator of interferon genes (cGAS-STING) pathway and the pathogenesis of cisplatin-induced hearing loss. H-151, a specific inhibitor of STING, reduced hair cell damage and ameliorated the hearing loss caused by cisplatin in vivo. This study underscores the role of cGAS-STING in cisplatin ototoxicity and presents H-151 as a promising therapeutic for hearing loss.
Cisplatin/toxicity*
;
Animals
;
Nucleotidyltransferases/antagonists & inhibitors*
;
Membrane Proteins/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Mice
;
Hair Cells, Auditory, Inner/pathology*
;
Antineoplastic Agents/toxicity*
;
Mice, Inbred C57BL
;
Hearing Loss/metabolism*
;
Male
;
Ototoxicity/metabolism*
2.Effects of Toluene on the Development of the Inner Ear and Lateral Line Sensory System of Zebrafish.
Xu Dong LI ; Hong Wei TU ; Ke Qi HU ; Yun Gang LIU ; Li Na MAO ; Feng Yan WANG ; Hong Ying QU ; Qing CHEN
Biomedical and Environmental Sciences 2021;34(2):110-118
Objective:
The aim of this study was to explore the ototoxicity of toluene in the early development of zebrafish embryos/larvae.
Methods:
Zebrafish were utilized to explore the ototoxicity of toluene. Locomotion analysis, immunofluorescence, and qPCR were used to understand the phenotypes and molecular mechanisms of toluene ototoxicity.
Results:
The results demonstrated that at 2 mmol/L, toluene induced zebrafish larvae death at 120 hours post fertilization (hpf) at a rate of 25.79% and inhibited the rate of hatching at 72 hpf. Furthermore, toluene exposure inhibited the distance travelled and average swimming velocity of zebrafish larvae while increasing the frequency of movements. As shown by fluorescence staining of hair cells, toluene inhibited the formation of lateral line neuromasts and middle line 1 (Ml
Conclusion
This study indicated that toluene may affect the development of both the inner ear and lateral line systems in zebrafish, while the lateral line system may be more sensitive to toluene than the inner ear.
Animals
;
Ear, Inner/growth & development*
;
Embryo, Nonmammalian/drug effects*
;
Gene Expression Regulation, Developmental/drug effects*
;
Hair Cells, Auditory/metabolism*
;
Lateral Line System/growth & development*
;
Locomotion/drug effects*
;
Ototoxicity/physiopathology*
;
Toluene/toxicity*
;
Zebrafish

Result Analysis
Print
Save
E-mail