1.NFATc1 and RUNX2 expression on orthodontic tooth movement with gradually increasing force
I Gusti Aju Wahju Ardani ; Ndhuk Ratih Mustiqo Hati ; Erdiarti Dyah Wahyuningtyas
Acta Medica Philippina 2024;58(14):86-93
Background:
Orthodontic tooth movement occurs due to bone resorption and apposition on the pressure and tension side of the PDL. The transcription factors associated with osteoclast differentiation are NFATc1 while osteoblast differentiation is associated with RUNX2. The optimum force of orthodontic tooth movement can move the teeth to the desired position, without causing discomfort and tissue damage to the patient.
Objective:
This study aims to analyse the effect of gradually increasing force on orthodontic tooth movement (by evaluating the NFATc1 and RUNX2 expression) in rats.
Methods:
This research is an in vivo experimental study with a post-test control group design. Twenty-eight healthy male adult Wistar rats (Rattus novergicus) aged 4-5 months with body weights 200-250 g rats were divided into seven study groups. Treatment groups in this study are given the force (by applying a closed coil spring between the maxillary central incisor and the maxillary first molar) of 5 g, 5-10 g, 10 g, and 10-20 g with the duration of treatment in 14 and 28 days. After the treatment day was finished, the alveolar bone tissue was isolated and investigated by immunohistochemical methods.
Results:
Indicate a significant difference between the control and all treatment groups of NFATc1 (p=0.003; p=0.000; p:0.010; p=0.001; p=0.001; p=0.000) and RUNX2 with groups of 10 g/14 days, 10 g/28 days, 5 g/28 days, 10 g/14 days,10-20 g/28 days (p=0.001; p=0.000; p=0.000; p=0.017; p=0.014; p=0.000) values.
Conclusion
Gradually increasing force affects orthodontic tooth movement by inducing bone resorption (high expression of NFATc1) in the pressure area and bone apposition (high expression of RUNX2) in the tension area. Applying heavy force by initially applying light force could inhibit hyalinization.
Orthodontic Tooth Movement
;
Tooth Movement Techniques
2.Three-dimensional finite element study of mandibular first molar distalization with clear aligner.
Fujia KANG ; Lei YU ; Qi ZHANG ; Xinpeng LI ; Zhiqiang HU ; Xianchun ZHU
West China Journal of Stomatology 2023;41(4):405-413
OBJECTIVES:
This study aimed to construct the finite element model of the mandibular first molar with the invisible appliance and explore the dentition movement characteristics of the mandibular first molar when using micro-implant anchorage and different initial positions of the first molar.
METHODS:
Models of the mandible, tooth, periodontal membrane, and invisible appliance were constructed using cone beam computed tomography (CBCT) data. The two groups were divided into the non-anchorage group and the micro-implant group (between the roots of the first molar and the second molar) based on whether the elastic traction of the micro-implant was assisted or not. The two groups were divided into the following conditions based on the starting position of the first molar: Working condition 1: the distance between the first molar and the second premolar was 0 mm; working condition 2: the distance between the first molar and the second premolar was 1 mm; working condition 3: the distance between the first molar and the second premolar was 2 mm; working condition 4: the distance between the first molar and the second premolar was 3 mm. The data characte-ristics of total displacement and displacement in each direction of dentition were analyzed.
RESULTS:
In the non-ancho-rage group, all the other teeth showed reverse movement except for the first molar which was moved distally. Meanwhile, in the micro-implant group, except for a small amount of mesial movement of the second molar in wor-king condition 1, the whole dentition in other working conditions presented distal movement and anterior teeth showed lingual movement, among which the distal displacement of the first molar in working condition 4 was the largest. With the change of the initial position of the first molar to the distal, the movement of the first molar to the distal, the premolar to the mesial, and the anterior to the lip increased, while the movement of the second molar to the mesial decreased.
CONCLUSIONS
The micro-implant can effectively protect the anterior anchorage, increase the expression rate of molar distancing, and avoid the round-trip movement of the second molar. The initial position of the first molar movement is related to the amount of distancing and the remaining tooth movement.
Finite Element Analysis
;
Molar
;
Bicuspid
;
Periodontal Ligament
;
Tooth Movement Techniques/methods*
;
Orthodontic Appliances, Removable
3.Efficacy of vertical control by using mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients.
Wei LIANG ; Yao TANG ; Wen Bin HUANG ; Bing HAN ; Jiu Xiang LIN
Journal of Peking University(Health Sciences) 2022;54(2):340-345
OBJECTIVE:
To investigate the efficacy of vertical control by using conventional mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients.
METHODS:
Twenty-eight Angle class Ⅱ patients [9 males, 19 females, and age (22.6±2.8) years] were selected in this study. All of these patients were treated by using straight wire appliance with 4 premolars extraction and 2 mini-implant anchorage in maxillary posterior buccal area. In this study, the self-control method was used to measure and analyze the lateral radiographs taken before and after orthodontic treatment in each case, the main cephalometric analysis items were related to vertical changes. The digitized lateral radiographs were imported into Dolphin Imaging Software (version 11.5: Dolphin Imaging and Management Solutions, Chatsworth, California, USA), and marked points were traced. Each marked point was confirmed by two orthodontists. The same orthodontist performed measurement on the lateral radiographs over a period of time. All measurement items were required to be measured 3 times, and the average value was taken as the final measurement result.
RESULTS:
Analysis of the cephalometric radiographs showed that, for vertical measurements after treatment, the differences of the following measurements were highly statistically significant (P < 0.001): SN-MP decreased by (1.40±1.45) degrees on average, FMA decreased by (1.58±1.32) degrees on average, the back-to-front height ratio (S-Go/N-Me) decreased by 1.42%±1.43% on average, Y-axis angle decreased by (1.03±0.99) degrees on average, face angle increases by (1.37±1.05) degree on average; The following measurements were statistically significant (P < 0.05): the average depression of the upper molars was (0.68±1.40) mm, and the average depression of the upper anterior teeth was (1.07±1.55) mm. The outcomes indicated that there was a certain degree of upper molar depression after the treatment, which produced a certain degree of counterclockwise rotation of the mandibular plane, resulting in a positive effect on the improvement of the profile.
CONCLUSION
The conventional micro-implant anchorage in maxillary posterior buccal area has a certain vertical control ability, and can give rise to a certain counterclockwise rotation of the mandible, which would improve the profile of Angle Class Ⅱ patients.
Bicuspid
;
Cephalometry/methods*
;
Female
;
Humans
;
Male
;
Malocclusion, Angle Class II/therapy*
;
Mandible
;
Maxilla/diagnostic imaging*
;
Orthodontic Anchorage Procedures
;
Tooth Movement Techniques
;
Vertical Dimension
4.Guidelines for clear aligner orthodontic treatment (2021).
Chinese Journal of Stomatology 2021;56(10):983-988
The content of the guidelines is based on monographs and literatures on the clear aligner orthodontic treatment in the past five years, and the clinical consensus of all the members of Expert Group for Writing Project of Clear Aligner Technology. This guidelines provide guidance and reference for orthodontists who want carry out clear aligner orthodontic treatment in three parts: overview, diagnosis and design, and common treatment strategies. In the part of the overview, the instructions for the preparation of this guide were described. The requirements for practitioners providing clear aligner orthodontic treatment were put forward, and the risks associated with clear aligner orthodontic treatment were suggested. In the part of diagnosis and design, the indications and selection of clear aligner orthodontic treatment were defined. The requirements of collecting data in orthodontic cases and the design process of clear aligner orthodontic treatment were also explained. The present common treatment strategies for clear aligner orthodontic treatment were summarized in the third part of the guidelines. The elaboration of the treatment methods such as distalization of molar, interproximal enamel reduction and stepwise tooth movement were explained.
Dental Care
;
Humans
;
Molar
;
Orthodontic Appliances, Removable
;
Tooth Movement Techniques
5.Efficacy of mandibular molar distalization by clear aligner treatment.
Dongxue WU ; Yunshan ZHAO ; Meng MA ; Qianqian ZHANG ; He LEI ; Yaqian WANG ; Yueshan LI ; Xi CHEN
Journal of Central South University(Medical Sciences) 2021;46(10):1114-1121
OBJECTIVES:
At present, the research on clear aligner of molar distalization mainly focuses on the upper jaw, while the research on mandibular molars is few.This study aims to evaluate the therapeutic effect of mandibular molars distalization with clear aligner via cone beam CT (CBCT) and Dolphin software.
METHODS:
Twenty cases of mandibular molars with clear aligner were included according to the inclusion and exclusion criteria. CBCT was taken before treatment (T0) and when the first molar was moved in place (T1). Dolphin software was used to measure the effectiveness of molar distalization. Three-dimensional changes in direction and the impact on the incisors and facial soft and hard tissues were evaluated.
RESULTS:
The effective rates of crown and root distalization of the second and first mandibular molars were 74%, 49%, and 71%, 47%, respectively. The second and first molars were both the distal buccal cusp with the largest distalization [(2.15 ± 0.91) mm and (1.85±1.09) mm], respectively, with significant difference between the T0 and T1 (
CONCLUSIONS
Clear aligner can effectively move mandibular molars farther, the crown is more effective than the root, and it is tilted. The second mandibular molar is more effective than the first mandibular molar in its distant displacement and three-dimensional changes. Molar distalization causes minor changes in mandibular incisors and facial soft and hard tissues.
Cephalometry
;
Maxilla
;
Molar
;
Orthodontic Appliances, Removable
;
Tooth Movement Techniques
6.Uprighting a mesially tilted mandibular second molar by using a dental implant as anchorage: a case report.
Jie ZHOU ; Xue-Qi GAN ; Jia-Yi LU ; Lin-Li FAN ; Zhuo-Li ZHU
West China Journal of Stomatology 2020;38(6):708-711
After tooth has been removed for a long time, adjacent teeth may tilt to occupy the edentulous space, leading to a break in the occlusal 3D equilibrium and a lack of restorative space. This case report presents a mandibular second molar uprighting with anchorage from a dental implant.
Dental Implants
;
Molar
;
Orthodontic Anchorage Procedures
;
Tooth Movement Techniques
7.Functional clear aligner treatment of class Ⅱ malocclusion in teenagers.
Li ZHOU ; Yan-Min WANG ; Lan ZHANG ; Jie YAO
West China Journal of Stomatology 2019;37(3):236-241
Class Ⅱ malocclusion is a common orofacial deformity that could harm the facial esthetics and oral function. Two-stage treatment strategy always applies to functional and skeletal (mild and moderate) class Ⅱ malocclusion with man-dibular retrognathism in teenagers. Traditional functional orthopedic appliances are less comfortable and inconvenient to correct the dental arches, making the treatment duration long. With the rapid progress of digital technology and material science, functional clear aligners that offer comfort have emerged. Functional clear aligners can combine orthopedic and orthodontic treatments to correct the jaw relationship and align the dental arch, thereby shortening the treatment duration. This paper emphasizes the treatment key points, and clinical experience of using functional clear aligners.
Adolescent
;
Esthetics, Dental
;
Humans
;
Malocclusion
;
Malocclusion, Angle Class II
;
Orthodontic Appliance Design
;
Tooth Movement Techniques
8.Reader's Forum.
The Korean Journal of Orthodontics 2019;49(1):1-2
No abstract available.
Malocclusion, Angle Class II
;
Orthodontic Appliance Design
;
Orthodontic Appliances
;
Tooth Movement Techniques
9.Intrusion of the extruded maxillary central incisor using skeletal anchorage system and unilateral segmental intrusion arch
Eun Young KWON ; Young Jae BAEK ; Soo Byung PARK ; Seong sik KIM ; Yong il KIM ; Youn kyung CHOI
Journal of Dental Rehabilitation and Applied Science 2019;35(3):180-190
Patients who have a moderate periodontitis with pathologic tooth migration of maxillary incisors, it is necessary not only periodontal treatment for reduce periodontal inflammation, but also orthodontic treatment to teeth repositioning. For orthodontic treatment, it is necessary to apply less force and careful considerations of the center of resistance of the tooth and optimal force of tooth movement. At this time, the segmental arch applied only to the target teeth, is more effective and predictable, because applied force and direction can be controlled. In addition, to design the orthodontic appliance that can prevent the unwanted tooth movement that used as an anchorage is important. In recent years, various types of skeletal anchorage system have been used for preventing loss of the anchorage. We reported the patient who had extruded maxillary central incisor due to pathologic tooth migration, treated by a successful periodontal-orthodontic multidisciplinary treatment using an orthodontic appliance designed to apply less traumatic force and reduce an anchorage loss.
Humans
;
Incisor
;
Inflammation
;
Orthodontic Appliance Design
;
Orthodontic Appliances
;
Orthodontic Wires
;
Periodontitis
;
Tooth
;
Tooth Migration
;
Tooth Movement
10.A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis.
Jian-Lei WU ; Yun-Feng LIU ; Wei PENG ; Hui-Yue DONG ; Jian-Xing ZHANG
Journal of Zhejiang University. Science. B 2018;19(7):535-546
Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using hydrostatic stress and logarithmic strain of the periodontal ligament (PDL) as indicators. Finite element models of a maxillary canine and surrounding tissues were developed. Distal translation/tipping forces, labial translation/tipping forces, and extrusion forces ranging from 0 to 300 g (100 g=0.98 N) were applied to the canine, as well as the force moment around the canine long axis ranging from 0 to 300 g·mm. The stress/strain of the PDL was quantified by nonlinear finite element analysis, and an absolute stress range between 0.47 kPa (capillary pressure) and 12.8 kPa (80% of human systolic blood pressure) was considered to be optimal, whereas an absolute strain exceeding 0.24% (80% of peak strain during canine maximal moving velocity) was considered optimal strain. The stress/strain distributions within the PDL were acquired for various canine movements, and the optimal orthodontic forces were calculated. As a result the optimal tipping forces (40-44 g for distal-direction and 28-32 g for labial-direction) were smaller than the translation forces (130-137 g for distal-direction and 110-124 g for labial-direction). In addition, the optimal forces for labial-direction motion (110-124 g for translation and 28-32 g for tipping) were smaller than those for distal-direction motion (130-137 g for translation and 40-44 g for tipping). Compared with previous results, the force interval was smaller than before and was therefore more conducive to the guidance of clinical treatment. The finite element analysis results provide new insights into orthodontic biomechanics and could help to optimize orthodontic treatment plans.
Biomechanical Phenomena
;
Computer Simulation
;
Cuspid
;
anatomy & histology
;
physiology
;
Dental Models
;
Finite Element Analysis
;
Humans
;
Imaging, Three-Dimensional
;
Maxilla
;
Orthodontic Friction
;
physiology
;
Periodontal Ligament
;
physiology
;
Rotation
;
Stress, Mechanical
;
Tooth Movement Techniques
;
statistics & numerical data


Result Analysis
Print
Save
E-mail