1.Extracellular vesicles: Roles in oocytes and emerging therapeutic opportunities.
Zhongyu ZHAO ; Yinrui SUN ; Renhao GUO ; Junzhi LIANG ; Wanlin DAI ; Yutao JIANG ; Yafan YU ; Yuexin YU ; Lixia HE ; Da LI
Chinese Medical Journal 2025;138(9):1050-1060
The production of high-quality oocytes requires precisely orchestrated intercellular communication. Extracellular vesicles (EVs) are cell-derived nanoparticles that play a vital role in the transfer of bioactive molecules, which has gained much attention in the field of diagnosis and treatment. Over the past ten years, the participation of EVs in the reproductive processes of oocytes has been broadly studied and has shown great potential for elucidating the intricacies of female reproductive health. This review provides an extensive discussion of the influence of EVs on oocytes, emphasizing their involvement in normal physiology and altered cargo under pathological conditions. In addition, the positive impact of therapeutic EVs on oocyte quality and their role in alleviating ovarian pathological conditions are summarized.
Humans
;
Extracellular Vesicles/physiology*
;
Oocytes/cytology*
;
Female
;
Animals
;
Cell Communication/physiology*
2.Mitochondrial dysfunction in ovarian aging.
Shuxin MA ; Guangyu LI ; Yingying QIN
Chinese Medical Journal 2025;138(23):3069-3082
Mitochondria serve as multifunctional powerhouses within cells, coordinating essential biological activities that are critical for cell viability, including material metabolism, signal transduction, and the maintenance of homeostasis. They support cells in adapting to complex and fluctuating environments. Oocytes, being the largest cells in multicellular organisms, contain a high number of mitochondria with unique structural characteristics. Mitochondria play active roles in the development and maturation of oocytes. A decline in mitochondrial function negatively affects both the quality and quantity of oocytes, thereby contributing to ovarian aging. However, the specific mechanisms through which mitochondrial dysfunction influences the progression of ovarian aging and impacts reproductive longevity remain unclear. Furthermore, medical strategies aimed at rejuvenating mitochondria to restore ovarian reserve and improve female reproductive potential may open new avenues for clinical treatment. In this review, we summarize the current understanding and key evidence regarding the role of mitochondrial dysfunction in ovarian aging and present emerging medical approaches targeting mitochondria to alleviate premature ovarian aging and enhance reproductive performance.
Humans
;
Female
;
Mitochondria/physiology*
;
Ovary/physiology*
;
Aging/physiology*
;
Animals
;
Oocytes/metabolism*
3.High-dose estrogen impairs demethylation of H3K27me3 by decreasing Kdm6b expression during ovarian hyperstimulation in mice.
Quanmin KANG ; Fang LE ; Xiayuan XU ; Lifang CHEN ; Shi ZHENG ; Lijun LOU ; Nan JIANG ; Ruimin ZHAO ; Yuanyuan ZHOU ; Juan SHEN ; Minhao HU ; Ning WANG ; Qiongxiao HUANG ; Fan JIN
Journal of Zhejiang University. Science. B 2025;26(3):269-285
Given that ovarian stimulation is vital for assisted reproductive technology (ART) and results in elevated serum estrogen levels, exploring the impact of elevated estrogen exposure on oocytes and embryos is necessary. We investigated the effects of various ovarian stimulation treatments on oocyte and embryo morphology and gene expression using a mouse model and estrogen-treated mouse embryonic stem cells (mESCs). Female C57BL/6J mice were subjected to two types of conventional ovarian stimulation and ovarian hyperstimulation; mice treated with only normal saline served as controls. Hyperstimulation resulted in high serum estrogen levels, enlarged ovaries, an increased number of aberrant oocytes, and decreased embryo formation. The messenger RNA (mRNA)-sequencing of oocytes revealed the dysregulated expression of lysine-specific demethylase 6b (Kdm6b), which may be a key factor indicating hyperstimulation-induced aberrant oocytes and embryos. In vitro, Kdm6b expression was downregulated in mESCs treated with high-dose estrogen; treatment with an estrogen receptor antagonist could reverse this downregulated expression level. Furthermore, treatment with high-dose estrogen resulted in the upregulated expression of histone H3 lysine 27 trimethylation (H3K27me3) and phosphorylated H2A histone family member X (γ-H2AX). Notably, knockdown of Kdm6b and high estrogen levels hindered the formation of embryoid bodies, with a concomitant increase in the expression of H3K27me3 and γ-H2AX. Collectively, our findings revealed that hyperstimulation-induced high-dose estrogen could impair the demethylation of H3K27me3 by reducing Kdm6b expression. Accordingly, Kdm6b could be a promising marker for clinically predicting ART outcomes in patients with ovarian hyperstimulation syndrome.
Female
;
Mice
;
Demethylation/drug effects*
;
Embryonic Stem Cells
;
Estrogens/administration & dosage*
;
Gene Expression/drug effects*
;
Histones/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Mice, Inbred C57BL
;
Oocytes
;
Ovary/drug effects*
;
Reproductive Techniques, Assisted
;
Animals
4.Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.
Dongshuang WANG ; Meiling ZHANG ; Wang-Sheng WANG ; Weiwei CHU ; Junyu ZHAI ; Yun SUN ; Zi-Jiang CHEN ; Yanzhi DU
Frontiers of Medicine 2025;19(1):149-169
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Polycystic Ovary Syndrome/physiopathology*
;
Female
;
Animals
;
Neurotensin/metabolism*
;
Receptors, Neurotensin/antagonists & inhibitors*
;
Mice
;
Ovulation/drug effects*
;
Humans
;
Granulosa Cells/metabolism*
;
Adult
;
Oocytes/metabolism*
;
MAP Kinase Signaling System
;
Signal Transduction
;
Follicular Fluid/metabolism*
;
Disease Models, Animal
;
Gonadotropin-Releasing Hormone/analogs & derivatives*
5.Progress in the regulation of mammalian embryonic development and reproduction by bone morphogenetic proteins.
Hongyu JIA ; Honghong HE ; Peng WANG ; Xiaoxiao HUANG ; Wenyi CAI ; Yaying WANG ; Jian LI ; Daoliang LAN ; Huizhu ZHANG
Chinese Journal of Biotechnology 2025;41(7):2534-2544
Bone morphogenetic proteins (BMPs) are multifunctional growth factors of the transforming growth factor β (TGF-β) superfamily. They regulate steroid secretion from mammalian granulosa cells, promote granulosa cell survival and proliferation, and inhibit follicular atresia, luteinization, and granulosa cell apoptosis, thereby promoting the development and maturation of mammalian follicles. At the same time, BMPs play an important role in embryonic morphogenesis, induction of uterine receptivity, and blastocyst attachment. This paper describes the effects of BMPs on mammalian follicular and embryonic development and the roles of BMPs in female reproduction, focusing on the process in which BMPs promote follicular maturation by regulating steroid secretion from granulosa cells during mammalian oocyte maturation. This review aims to provide a reference for further research on mammalian oocyte culture and improvement of reproductive efficiency in female animals.
Animals
;
Embryonic Development/drug effects*
;
Female
;
Bone Morphogenetic Proteins/pharmacology*
;
Reproduction/physiology*
;
Humans
;
Granulosa Cells/cytology*
;
Oocytes
6.Research progress in biological activities and oocyte aging-regulating effect of EGCG.
Weiying ZHANG ; Huizhu ZHANG ; Yujun LI ; Daoliang LAN ; Xianrong XIONG ; Yaying WANG ; Jian LI ; Honghong HE
Chinese Journal of Biotechnology 2024;40(12):4382-4395
Epigallocatechin gallate (EGCG), the predominant polyphenol in green tea, exerts a spectrum of physiological activities, including antioxidant, anticancer, and anti-inflammatory effects. Emerging research underscores the significance of EGCG in modulating oocyte aging. EGCG can enhance antioxidant defenses, improve mitochondrial functions, and inhibit apoptotic pathways, thereby retarding the aging of oocytes. This review delineates the main molecular features of EGCG and expounds its regulatory mechanisms concerning oocyte aging, enriching the knowledge on the role of EGCG in the amelioration of oocyte aging.
Catechin/pharmacology*
;
Oocytes/metabolism*
;
Humans
;
Animals
;
Antioxidants/pharmacology*
;
Female
;
Cellular Senescence/drug effects*
;
Tea/chemistry*
;
Apoptosis/drug effects*
8.Expert consensus on the vitrification of human oocytes and embryos.
Da LI ; Yingzhuo GAO ; Rong LI
Chinese Medical Journal 2023;136(23):2773-2775
9.Research Progress in the Regulation of Follicle Development by Melatonin.
Jing-Jing LIU ; Zong-Yang LI ; Li-Mei LIU ; Xiao-Yan PAN
Acta Academiae Medicinae Sinicae 2023;45(6):997-1004
Melatonin,an endocrine hormone synthesized by the pineal gland,plays an important role in the reproduction.The growth and development of follicles is the basis of female mammalian fertility.Follicles have a high concentration of melatonin.Melatonin receptors exist on ovarian granulosa cells,follicle cells,and oocytes.It regulates the growth and development of these cells and the maturation and atresia of follicles,affecting female fertility.This paper reviews the protective effects and regulatory mechanisms of melatonin on the development of ovarian follicles,granulosa cells,and oocytes and makes an outlook on the therapeutic potential of melatonin for ovarian injury,underpinning the clinical application of melatonin in the future.
Animals
;
Female
;
Melatonin/pharmacology*
;
Ovarian Follicle
;
Oocytes
;
Granulosa Cells/physiology*
;
Mammals
10.Role of histone posttranslational modifications in the regulation of ovarian function.
Mei-Ling LE ; Lian-Jie ZENG ; Tao LUO ; Li-Ping ZHENG
Acta Physiologica Sinica 2023;75(1):91-98
The ovary is the reproductive organ of female mammals, which is responsible for producing mature eggs and secreting sex hormones. The regulation of ovarian function involves the ordered activation and repression of genes related to cell growth and differentiation. In recent years, it has been found that histone posttranslational modification can affect DNA replication, damage repair and gene transcriptional activity. Some regulatory enzymes mediating histone modification are co-activators or co-inhibitors associated with transcription factors, which play important roles in the regulation of ovarian function and the development of ovary-related diseases. Therefore, this review outlines the dynamic patterns of common histone modifications (mainly acetylation and methylation) during the reproductive cycle and their regulation of gene expression for important molecular events, focusing on the mechanisms of follicle development and sex hormone secretion and function. For example, the specific dynamics of histone acetylation are important for the arrest and resumption of meiosis in oocytes, while histone (especially H3K4) methylation affects the maturation of oocytes by regulating their chromatin transcriptional activity and meiotic progression. Besides, histone acetylation or methylation can also promote the synthesis and secretion of steroid hormones before ovulation. Finally, the abnormal histone posttranslational modifications in the development of two common ovarian diseases (premature ovarian insufficiency and polycystic ovary syndrome) are briefly described. It will provide a reference basis for understanding the complex regulation mechanism of ovarian function and further exploring the potential therapeutic targets of related diseases.
Female
;
Animals
;
Histone Code
;
Histones
;
Protein Processing, Post-Translational
;
Ovary
;
Oocytes
;
Mammals

Result Analysis
Print
Save
E-mail