1.Research progress and development potential of oncolytic vaccinia virus.
Xinyu ZHANG ; Jiangshan HE ; Yiming SHAO
Chinese Medical Journal 2025;138(7):777-791
Oncolytic virotherapy is a promising therapeutic approach treating tumors, where oncolytic viruses (OVs) can selectively infect and lyse tumor cells through replication, while also triggering long-lasting anti-tumor immune responses. Vaccinia virus (VV) has emerged as a leading candidate for use as an OV due to its broad cytophilicity and robust capacity to express exogenous genes. Consequently, oncolytic vaccinia virus (OVV) has entered clinical trials. This review provides an overview of the key strategies used in the development of OVV, summarizes the findings from clinical trials, and addresses the challenges that must be overcome in the advancement of OVV-based therapies. Furthermore, it explores potential future strategies for enhancing the development and clinical application of OVV, intending to improve tumor treatment outcomes. The review aims to facilitate the further development and clinical adoption of OVV, thereby advancing tumor therapies.
Vaccinia virus/physiology*
;
Humans
;
Oncolytic Virotherapy/methods*
;
Oncolytic Viruses/physiology*
;
Neoplasms/therapy*
;
Animals
2.New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches.
Shiyao HU ; Yiqi CAI ; Yong SHEN ; Yingkuan SHAO ; Yushen DU ; Yiding CHEN
Journal of Zhejiang University. Science. B 2025;26(6):546-556
Immunomodulatory cancer therapy is witnessing the rise of viral immunotherapy. The oncolytic influenza A virus, although promising in preclinical investigations, remains to be implemented in clinical practice. Recent progress in genetic engineering, coupled with experiential insights, offers opportunities to enhance the therapeutic efficacy of the influenza A virus. This review explores the use of the influenza virus, its attenuated forms, and associated vaccines in cancer immunotherapy, highlighting their respective advantages and challenges. We further elucidate methods for engineering influenza viruses and innovative approaches to augment them with cytokines or immune checkpoint inhibitors, aiming to maximize their clinical impact. Our goal is to provide insights essential for refining influenza A virus-based viral tumor immunotherapies.
Humans
;
Neoplasms/immunology*
;
Immunotherapy/trends*
;
Influenza A virus/immunology*
;
Oncolytic Virotherapy/trends*
;
Animals
;
Cancer Vaccines/therapeutic use*
;
Oncolytic Viruses
;
Genetic Engineering
;
Immune Checkpoint Inhibitors/therapeutic use*
3.Oncolytic virus-mediated base editing for targeted killing of cervical cancer cells.
Huanhuan XU ; Siwei LI ; Xi LUO ; Zuping ZHOU ; Changhao BI
Chinese Journal of Biotechnology 2025;41(4):1382-1394
Conventional cancer therapies, such as radiotherapy and chemotherapy, often damage normal cells and may induce new tumors. Oncolytic viruses (OVs) selectively target tumor cells while sparing normal cells. Most OVs used in clinical trials have been genetically engineered to enhance their ability to target tumor cells and activate immune responses. To develop a specific OV-based approach for treating cervical cancer, this study constructed an oncolytic adenovirus that delivered a base editor targeting oncogenes to achieve efficient killing of tumor cells through inhibiting tumor growth and directly lysing tumor cells. We utilized the human telomerase reverse transcriptase (TERT) promoter to drive the expression of adenovirus early region 1A (E1A) and successfully constructed the P-hTERT-E1A-GFP vector, which was validated for its activity in cervical cancer cells. Given the critical role of the MYC oncogene in the research of oncology, identifying efficient editing sites for the MYC oncogene is a key step in this study.Three MYC-targeting gRNAs were engineered and co-delivered with ABE8e base editor plasmids into HEK293T cells. Following puromycin selection, Sanger sequencing demonstrated differential editing efficiencies: MYC-1 (43%), MYC-2 (25%), and MYC-3 (35%), identifying MYC-1 as the most efficient editing locus. By constructing the P-ABEs-hTERT-E1A-GFP and P-MYC gRNA-hTERT-E1A-GFP vectors, we successfully packaged the virus and confirmed its specificity and efficacy. The experimental results demonstrate that this novel oncolytic adenovirus effectively inhibits the growth of HeLa cells in vitro, providing new experimental evidence and potential strategies for treating cervical cancer based on the HeLa cell model.
Humans
;
Uterine Cervical Neoplasms/pathology*
;
Oncolytic Viruses/genetics*
;
Female
;
HEK293 Cells
;
Oncolytic Virotherapy/methods*
;
Adenoviridae/genetics*
;
Gene Editing/methods*
;
Telomerase/genetics*
;
Adenovirus E1A Proteins/genetics*
;
Genetic Vectors/genetics*
;
HeLa Cells
4.Preparation and antitumor activity characterization of oncolytic nanoparticles encapsulating CVA21.
Yinping WANG ; Qiying CAI ; Jingjing ZHOU ; Xiaodi ZHENG ; Linkang CAI ; Yang WANG ; Binlei LIU
Chinese Journal of Biotechnology 2025;41(4):1395-1414
This study aims to investigate the potential of oncolytic nanoparticles encapsulating Coxsackievirus A21 (CVA21) full-genome mRNA (CVA21@ONP) to resurrect CVA21 and induce apoptosis in host cells, as well as the antitumor immune effects of CVA21@ONP in immunocompetent tumor-bearing BALB/c mice. We used lipid nanoparticles (LNPs) to encapsulate CVA21 full-genome mRNA, thus preparing CVA21@ONP. The killing efficacy of CVA21@ONP was determined by the plaque assay and cell counting kit-8 (CCK-8), and the apoptosis in HT29 and CT26-iRFP cells was evaluated by flow cytometry. Mice were administrated with CVA21@ONP at high and low doses intratumorally, and the growth of tumors expressing infra-red fluorescent protein (iRFP) was monitored. Additionally, the types and changes of immune cells in the spleen were analyzed by flow cytometry. The results demonstrated that CVA21@ONP successfully resurrected CVA21 in both HT29 and U87MG cells. The plaque assay revealed robust killing effects of CVA21@ONP against both human and murine cell lines, and flow cytometry results showed increased early and late apoptotic cells. Notably, intratumoral detection revealed significantly down-regulated expression of iRFP in both high- and low-dose CVA21@ONP groups. Flow cytometry results further indicated that CVA21@ONP treatment effectively reduced the levels of immunosuppressive cells, including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), in the spleen, while enhancing T cell-dependent antitumor immune responses. These findings suggest that CVA21@ONP can replicate and survive extensively both in vitro and in vivo, activating the immune system of mice administrated with CVA21@ONP to target cells at the tumor site, thereby remodeling the tumor immune microenvironment and accelerating the suppression or even complete regression of tumors. The oncolytic performance of CVA21@ONP has been verified through intratumoral injection administration in this study, aimed at further exploring its therapeutic potential and promoting the development of the field of tumor treatment.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Apoptosis
;
Oncolytic Viruses/genetics*
;
Oncolytic Virotherapy/methods*
;
Cell Line, Tumor
;
RNA, Messenger/genetics*
;
HT29 Cells
5.Construction of a stable 4T1 cell line expressing UL19 by the PiggyBac transposon system.
Xiaotong ZHAO ; Xinya WANG ; Binlei LIU ; Han HU ; Yang WANG
Chinese Journal of Biotechnology 2024;40(11):4138-4148
To investigate the mechanism of the major capsid protein VP5 (encoded by the UL19 gene) of oncolytic herpes simplex virus type Ⅱ (oHSV2) in regulating the antitumor function of immune cells, we constructed a mouse breast cancer cell line 4T1-iRFP-VP5-GFP stably expressing VP5 protein, near-infrared fluorescent protein (iRFP), and green fluorescent protein (GFP) by using the PiggyBac transposon system. Flow cytometry and Western blotting were employed to screen the monoclonal cell lines expressing both GFP and VP5 and examine the expression stability of UL19 in the constructed cell line. The results of SYBR Green I real-time PCR and Western blotting showed that the copies of UL19 and the expression level of VP5 protein in the 15th passage of 4T1-iRFP-VP5-GFP cells were significantly higher than those in the 4T1 cells transiently transfected with UL19, demonstrating the stable insertion of UL19 into the 4T1 cell genome. The real-time cell analysis (RTCA) was employed to monitor the proliferation of 4T1-iRFP-VP5-GFP cells, which showed similar proliferation activity to their parental 4T1 cells. Further studies confirmed that NK92 cells exhibited stronger cytotoxicity against 4T1-iRFP-VP5-GFP cells than against 4T1 cells. This study layed a foundation for elucidating the role of VP5 protein in regulating immune cells, including T cells and NK cells, via HLA-E in 4T1 cells to exert the anti-tumor function.
Animals
;
Mice
;
DNA Transposable Elements/genetics*
;
Cell Line, Tumor
;
Capsid Proteins/biosynthesis*
;
Transfection
;
Green Fluorescent Proteins/metabolism*
;
Oncolytic Viruses/genetics*
;
Female
;
Simplexvirus/genetics*
6.Progress in engineering application of human adenovirus.
Yang ZHAO ; Qiwei ZHANG ; Xueshan XIA
Chinese Journal of Biotechnology 2020;36(7):1269-1276
Human adenoviruses are widespread causative agent that induces respiratory diseases, epidemic keratoconjunctivitis and other related diseases. Adenoviruses are commonly used in experimental and clinical areas. It is one of the most commonly used virus vectors in gene therapy, and it has attracted a lot of attention and has a high research potential in tumor gene therapy and virus oncolytic. Here, we summarize the biological characteristics, epidemiology and current application of adenovirus, in order to provide reference for engineering application of adenovirus.
Adenovirus Infections, Human
;
epidemiology
;
virology
;
Adenoviruses, Human
;
genetics
;
Genetic Engineering
;
methods
;
trends
;
Genetic Vectors
;
Humans
;
Oncolytic Virotherapy
;
trends
;
Oncolytic Viruses
;
genetics
;
Virus Replication
7.Recent Advances and Future Directions in Immunotherapeutics for Hepatocellular Carcinoma
Yuri CHO ; Jimin HAN ; Won KIM
Journal of Liver Cancer 2019;19(1):1-11
Systemic target therapeutic drugs, such as sorafenib, lenvatinib, or regorafenib are the only drugs that are known to be effective against advanced hepatocellular carcinoma (HCC). However, these agents show a limited efficacy in killing residual tumors. Immunotherapy is an alternative approach to this treatment and has been used to successfully treat different cancers, including HCC. HCC is an inflammation-induced cancer and represents a very interesting target for immunotherapeutics. Immunotherapies aim to reverse the immune tolerance and suppression found in tumor microenvironments and include approaches, such as adoptive cell therapy, immune checkpoint inhibition, and cancer vaccination. Adoptive cell therapy uses autologous natural killer or cytokine-induced killer cells by cultivating them ex vivo and subsequently reinfusing them into the patient. Immune checkpoint inhibitors reactivate tumor-specific T cells by suppressing checkpoint-mediated inhibitory signaling. Cancer vaccination induces a tumor-specific immune response by activating effector T lymphocytes. A wide range of potential immunotherapy-related adverse events occur; therefore, a multidisciplinary collaborative management is required across the clinical spectrum. This review summarizes the current status of immunotherapy for HCC and provides a perspective on its future applications.
Carcinoma, Hepatocellular
;
Cell- and Tissue-Based Therapy
;
Cytokine-Induced Killer Cells
;
Homicide
;
Humans
;
Immune Tolerance
;
Immunotherapy
;
Neoplasm, Residual
;
Oncolytic Viruses
;
T-Lymphocytes
;
Tumor Microenvironment
;
Vaccination
8.Cell Death Mechanisms in Esophageal Squamous Cell Carcinoma Induced by Vesicular Stomatitis Virus Matrix Protein
Yousef DOUZANDEGAN ; Alireza TAHAMTAN ; Zahra GRAY ; Hadi Razavi NIKOO ; Alijan TABARRAEI ; Abdolvahab MORADI
Osong Public Health and Research Perspectives 2019;10(4):246-252
OBJECTIVES: Vesicular stomatitis virus (VSV) is under development as an oncolytic virus due to its preferential replication in cancer cells and oncolytic activity, however the viral components responsible have not yet been determined. In this study the effects of VSV wild-type (wt) and M51R-mutant matrix proteins (M51R-mMP) on apoptosis, pyroptosis, necroptosis, and autophagy pathways, in an esophagus cancer cell line (KYSE-30) were investigated. METHODS: The KYSE-30 cells were transfected with pcDNA3.1 plasmids encoding wt or M51R-mMP, and apoptosis, pyroptosis, necroptosis, and autophagy were evaluated 48 and 72 hours after transfection. RESULTS: KYSE-30 cells transfected with VSV wt and M51R-mMPs significantly reduced cell viability to < 50% at 72 hours post-transfection. M51R-MP significantly increased the concentration of caspase-8 and caspase-9 at 48 and 72 hours post-transfection, respectively ( p < 0.05). In contrast, no significant changes were detected following transfection with the VSV wt plasmid. Moreover, VSV wt and M51R-mMP transfected cells did not change the expression of caspase-3. VSV wt and M51R-mMPs did not mMP change caspase-1 expression (a marker of pyroptosis) at 48 and 72 hours post-transfection. However, M51R-mMP and VSV wt transfected cells significantly increased RIP-1 (a marker of necroptosis) expression at 72 hours post-infection ( p < 0.05). Beclin-1, a biomarker of autophagy, was also induced by transfection with VSV wt or M51R-mMPs at 48 hours post-transfection. CONCLUSION: The results in this study indicated that VSV exerts oncolytic activity in KYSE-30 tumor cells through different cell death pathways, suggesting that M51R-mMP may potentially be used to enhance oncolysis.
Apoptosis
;
Autophagy
;
Carcinoma, Squamous Cell
;
Caspase 3
;
Caspase 8
;
Caspase 9
;
Cell Death
;
Cell Line
;
Cell Survival
;
Epithelial Cells
;
Esophageal Neoplasms
;
Oncolytic Viruses
;
Plasmids
;
Pyroptosis
;
Transfection
;
Vesicular Stomatitis
;
Viral Structures
9.Reoviral Oncotropism Against c-Myc Overexpressing HS 68 Cells.
Journal of Bacteriology and Virology 2015;45(2):126-131
Naturally occurring reoviruses are live replication-proficient viruses specifically infecting human cancer cell while sparing normal counterpart. Since the discovery of reoviruses in 1950s, reoviruses have shown various degrees of safety and efficacy in pre-clinical or clinical application for human anti-cancer therapeutics. I have recently shown that cellular tumor suppressor genes, such as p53, ATM (Ataxia telangiectasia mutated), and RB (Retinoblastoma associated), are important in determining reoviral oncotropism. Thus, it is interesting to examine whether the aberrancy of c-Myc expression, whose normal function also plays an important role in the maintenance of genomic integrity, could affect reoviral oncolytic tropism. Hs68 cells are non-tumorigenic normal cells and resistant to reoviral cytopathic effects. Importantly, I found that c-Myc overexpression in human HS68 cells effectively induced reovirus cytophatic effects compared to mock expressed cells as shown by the typical reoviral cytophathology and an increased level of caspase-3 activity. Taken together, overexpression of c-Myc could play an important role in determining reoviral oncolytic tropism.
Caspase 3
;
Genes, Tumor Suppressor
;
Humans
;
Oncogenes
;
Oncolytic Viruses
;
Telangiectasis
;
Tropism
10.Construction of a new oncolytic virus oHSV2hGM-CSF and its anti-tumor effects.
Gui-Lan SHI ; Xiu-Fen ZHUANG ; Xiang-Ping HAN ; Jie LI ; Yu ZHANG ; Shu-Ren ZHANG ; Bin-Lei LIU
Chinese Journal of Oncology 2012;34(2):89-95
OBJECTIVEThe aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF.
METHODSoHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded.
RESULTSBoth oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal survival over 110 days after tumor cells inoculation whereas all the mice in the PBS group died by day 22 (P < 0.01). The anti-tumor mechanism of the newly constructed oHSV2hGM-CSF against B16R cell tumor appeared to include the directly oncolytic activity and the induction of anti-tumor immunity to some degree.
CONCLUSIONThe findings of our study demonstrate that the newly constructed oHSV2hGM-CSF has potent anti-tumor activity in vitro to many tumor cell lines and in vive to the transplanted B16R tumor models.
Animals ; Cell Line, Tumor ; Female ; Gene Deletion ; Genetic Engineering ; Granulocyte-Macrophage Colony-Stimulating Factor ; genetics ; Herpesvirus 2, Human ; genetics ; immunology ; Humans ; Immediate-Early Proteins ; genetics ; metabolism ; Melanoma, Experimental ; pathology ; therapy ; virology ; Mice ; Mice, Inbred C57BL ; Oncolytic Virotherapy ; methods ; Oncolytic Viruses ; genetics ; physiology ; Random Allocation ; Tumor Burden ; Viral Proteins ; genetics ; metabolism ; Xenograft Model Antitumor Assays

Result Analysis
Print
Save
E-mail