1.Hsa-miR-105-5p acts as an oncogene in triple-negative breast cancer.
Da QIAN ; Tao ZHOU ; Hanchu XIONG ; Yuhao XU ; Jie QIU ; Yihao WU ; Weimin HONG ; Xuli MENG
Chinese Medical Journal 2023;136(24):3022-3024
2.Genetic analysis of two cases with MYC "negative" Burkitt lymphoma.
Rui LYU ; Yingchun ZHENG ; Gang AN ; Chengwen LI
Chinese Journal of Medical Genetics 2023;40(11):1340-1344
OBJECTIVE:
To carry out combined genetic analysis on two patients suspected for Burkitt lymphoma to facilitate their diagnosis and treatment.
METHODS:
G banded karyotyping and interphase and metaphase fluorescence in situ hybridization (FISH) were used to detect the specific sites of chromosomes by using separate and fusion probes.
RESULTS:
The separate probe showed no presence of MYC gene abnormality, while fusion probe confirmed the IGH::MYC translocation in the samples. Combined with the clinical features and pathological characteristics, the two patients were finally diagnosed with Burkitt lymphoma, which was confirmed by targeted capture next generation sequencing.
CONCLUSION
The separate probe for the MYC gene has some shortcomings and should be used together with dual fusion probe to improve the accuracy of diagnosis.
Humans
;
Burkitt Lymphoma/pathology*
;
In Situ Hybridization, Fluorescence
;
Genes, myc
;
Translocation, Genetic
;
Karyotyping
3.High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast.
Dawei XIE ; Zheng WANG ; Beibei SUN ; Liwei QU ; Musheng ZENG ; Lin FENG ; Mingzhou GUO ; Guizhen WANG ; Jihui HAO ; Guangbiao ZHOU
Frontiers of Medicine 2023;17(5):907-923
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
Female
;
Humans
;
Alternative Splicing
;
Breast Neoplasms/metabolism*
;
Carcinoma, Pancreatic Ductal/pathology*
;
Focal Adhesion Protein-Tyrosine Kinases/therapeutic use*
;
Nerve Tissue Proteins/genetics*
;
Neuroendocrine Tumors/genetics*
;
Oncogenes
;
Pancreatic Neoplasms/metabolism*
4.Progress of Research on the Relationship between Lung Microbiome and Lung Cancer.
Zheng SU ; Xinhua JIA ; Yaguang FAN ; Fanghui ZHAO ; Youlin QIAO
Chinese Journal of Lung Cancer 2022;25(1):40-45
The microbiota plays an important role in the biological functions of the human body and is associated with various disease states such as inflammation (gastritis, hepatitis) and cancer (stomach, cervical, liver). The Human Microbiome Project painted a panorama of human microorganisms in its first phase, incorporating body parts such as the nasal cavity, oral cavity, intestine, vagina and skin, while the lungs were considered a sterile environment. However, studies in recent years have confirmed the presence of a rich microbial community in the lung, and the association of this lung microbiota with lung disease has become a hot topic of research. Current research has found that patients with lung cancer have a specific microbiota compared to healthy individuals or patients with lung disease. Even in patients with lung cancer, a lung microbiota specific to the tumor site is present. In addition, different pathological types and metastatic status of lung cancer can lead to differences in microbiota. Mechanistic studies have found that the lung microbiota may influence lung cancer development by affecting the immune response. Clinical studies on lung microbiota and immunotherapy are still in the preliminary stage. More relevant studies are needed in the future to provide high-quality evidence to further understand the oncogenic mechanisms of lung microbiota and provide new ideas for clinical treatment. This paper briefly reviews the progress of lung microbiota research in terms of its relevance to lung cancer, possible molecular mechanisms and applications in clinical treatment, and provides an outlook for future research.
.
Humans
;
Lung
;
Lung Diseases
;
Lung Neoplasms
;
Microbiota
;
Oncogenes
5.Relationship between EGFR, ALK Gene Mutation and Imaging and Pathological Features in Invasive Lung Adenocarcinoma.
He YANG ; Zicheng LIU ; Hongya WANG ; Liang CHEN ; Jun WANG ; Wei WEN ; Xinfeng XU ; Quan ZHU
Chinese Journal of Lung Cancer 2022;25(3):147-155
BACKGROUND:
At present, the research progress of targeted therapy for epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) gene mutations in lung adenocarcinoma is very rapid, which brings new hope for the treatment of advanced lung adenocarcinoma patients. However, the specific imaging and pathological features of EGFR and ALK gene mutations in adenocarcinoma are still controversial. This study will further explore the correlation between EGFR, ALK gene mutations and imaging and pathological features in invasive lung adenocarcinoma.
METHODS:
A total of 525 patients with lung adenocarcinoma who underwent surgery in our center from January 2018 to December 2019 were included. According to the results of postoperative gene detection, the patients were divided into EGFR gene mutation group, ALK gene mutation group and wild group, and the EGFR gene mutation group was divided into exon 19 and exon 21 subtypes. The pathological features of the mutation group and wild group, such as histological subtype, lymph node metastasis, visceral pleural invasion (VPI) and imaging features such as tumor diameter, consolidation tumor ratio (CTR), lobulation sign, spiculation sign, pleural retraction sign, air bronchus sign and vacuole sign were analyzed by univariate analysis and multivariate Logistic regression analysis to explore whether the gene mutation group had specific manifestations.
RESULTS:
EGFR gene mutation group was common in women (OR=2.041, P=0.001), with more pleural traction sign (OR=1.506, P=0.042), and had little correlation with lymph node metastasis and VPI (P>0.05). Among them, exon 21 subtype was more common in older (OR=1.022, P=0.036), women (OR=2.010, P=0.007), and was associated with larger tumor diameter (OR=1.360, P=0.039) and pleural traction sign (OR=1.754, P=0.029). Exon 19 subtype was common in women (OR=2.230, P=0.009), with a high proportion of solid components (OR=1.589, P=0.047) and more lobulation sign (OR=2.762, P=0.026). ALK gene mutations were likely to occur in younger patients (OR=2.950, P=0.045), with somking history (OR=1.070, P=0.002), and there were more micropapillary components (OR=4.184, P=0.019) and VPI (OR=2.986, P=0.034) in pathology.
CONCLUSIONS
The EGFR and ALK genes mutated adenocarcinomas have specific imaging and clinicopathological features, and the mutations in exon 19 or exon 21 subtype have different imaging features, which is of great significance in guiding the clinical diagnosis and treatment of pulmonary nodules.
Adenocarcinoma of Lung/genetics*
;
Aged
;
Anaplastic Lymphoma Kinase/genetics*
;
ErbB Receptors/genetics*
;
Female
;
Genes, erbB-1
;
Humans
;
Lung Neoplasms/pathology*
;
Mutation
;
Tomography, X-Ray Computed/methods*
6.Targeted Therapy and Mechanism of Drug Resistance in Non-small Cell Lung Cancer with Epidermal Growth Factor Receptor Gene Mutation.
Chinese Journal of Lung Cancer 2022;25(3):183-192
Lung cancer is the sixth leading cause of death worldwide and one of the leading cause of death from malignant tumors. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Epidermal growth factor receptor (EGFR) gene mutation is a common mutation in NSCLC. For advanced NSCLC patients with EGFR mutations, EGFR-tyrosine kinase inhibitors (EGFR-TKIs), such as Gefitinib, Afatinib, Oxitinib and other targeted therapies have become the first-line treatment recommended by many guidelines, but many patients develop acquired drug resistance after about 1 year of medication. Patients with drug resistance will have earlier disease progression than patients without drug resistance, which has an important impact on the prognosis of patients. At present, the main treatment for patients with acquired resistance is new target inhibition for resistant mutation. For example, if patients with T790M mutation are resistant to the first or second generation drugs such as Gefitinb and Afatinib, they can be treated with the third generation drugs (Osimertinib or Almonertinib), which can delay the progression of the disease. Therefore, the study of drug resistance mechanism and treatment of drug resistance patients are essential. This paper mainly reviews targeted therapy and drug resistance mechanism of EGFR-mutant NSCLC patients, in order to provide reference for clinical application of EGFR-TKIs.
.
Acrylamides
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Drug Resistance, Neoplasm/genetics*
;
ErbB Receptors/genetics*
;
Genes, erbB-1
;
Humans
;
Indoles
;
Lung Neoplasms/pathology*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
;
Pyrimidines
7.Identification and expression analysis of R2R3-MYB gene family in Andrographis paniculata.
Jing-Yu LI ; Ming-Yang SUN ; Shi-Qiang XU ; Wei SUN ; Yan GU ; Yu MEI ; Ji-Hua WANG
China Journal of Chinese Materia Medica 2022;47(1):72-84
The plant growth, development, and secondary metabolism are regulated by R2 R3-MYB transcription factors. This study identified the R2 R3-MYB genes in the genome of Andrographis paniculata and analyzed the chromosomal localization, gene structure, and conserved domains, phylogenetic relationship, and promoter cis-acting elements of these R2 R3-MYB genes. Moreover, the gene expression profiles of R2 R3-MYB genes under abiotic stress and hormone treatments were generated by RNA-seq and validated by qRT-PCR. The results showed that A. paniculata contained 73 R2 R3-MYB genes on 21 chromosomes. These members belonged to 34 subfamilies, 19 of which could be classified into the known subfamilies in Arabidopsis thaliana. The 73 R2 R3-MYB members included 36 acidic proteins and 37 basic proteins, with the lengths of 148-887 aa. The domains, motifs, and gene structures of R2 R3-MYBs in A. paniculata were conserved. The promoter regions of these genes contains a variety of cis-acting elements related to the responses to environmental factors and plant hormones including light, ABA, MeJA, and drought. Based on the similarity of functions of R2 R3-MYBs in the same subfamily and the transcription profiles, ApMYB13/21/35/67/73(S22) may regulate drought stress through ABA pathway; ApMYB20(S11) and ApMYB55(S2) may play a role in the response of A. paniculata to high temperature and UV-C stress; ApMYB5(S7) and ApMYB33(S20) may affect the accumulation of andrographolide by regulating the expression of key enzymes in the MEP pathway. This study provides theoretical reference for further research on the functions of R2 R3-MYB genes in A. paniculata and breeding of A. paniculata varieties with high andrographolide content.
Andrographis paniculata
;
Gene Expression Regulation, Plant
;
Genes, myb
;
Multigene Family
;
Phylogeny
;
Plant Proteins/metabolism*
8.Identification and expression profiling of R2R3-MYB transcription factors in Erigeron breviscapus.
Wan-Ling SONG ; Gui-Sheng XIANG ; Ying-Chun LU ; Guang-Hui ZHANG ; Sheng-Chao YANG ; Yan ZHAO
China Journal of Chinese Materia Medica 2021;46(23):6149-6162
R2 R3-MYB transcription factors are ubiquitous in plants, playing a role in the regulation of plant growth, development, and secondary metabolism. In this paper, the R2 R3-MYB transcription factors were identified by bioinformatics analysis of the genomic data of Erigeron breviscapus, and their gene sequences, structures, physical and chemical properties were analyzed. The functions of R2 R3-MYB transcription factors were predicted by cluster analysis. Meanwhile, the expression patterns of R2 R3-MYB transcription factors in response to hormone treatments were analyzed. A total of 108 R2 R3-MYB transcription factors, named EbMYB1-EbMYB108, were identified from the genome of E. breviscapus. Most of the R2 R3-MYB genes carried 2-4 exons. The phylogenetic tree of MYBs in E. breviscapus and Arabidopsis thaliala was constructed, which classified 234 MYBs into 30 subfamilies. The MYBs in the five MYB subfamilies of A.thaliala were clustered into independent clades, and those in E. breviscapus were clustered into four clades. The transcriptome data showed that MYB genes were differentially expressed in different tissues of E. breviscapus and in response to the treatments with exogenous hormones such as ABA, SA, and GA for different time. The transcription of 13 R2 R3-MYB genes did not change significantly, and the expression patterns of some genes were up-regulated or down-regulated with the extension of hormone treatment time. This study provides a theoretical basis for revealing the mechanisms of R2 R3-MYB transcription factors in regulating the growth and development, stress(hormone) response, and active ingredient accumulation in E. breviscapus.
Erigeron/genetics*
;
Gene Expression Regulation, Plant
;
Genes, myb
;
Phylogeny
;
Plant Proteins/metabolism*
;
Transcription Factors/metabolism*
9.Research progress on the relationship between the Raf murine sarcoma viral oncogene homolog B gene mutation and lymph node metastasis of papillary thyroid carcinoma.
Yong WANG ; Yi WEN ; Shiyu LIN ; Dan WEN ; Jianping XIE
Journal of Biomedical Engineering 2021;38(1):191-195
In recent years, with the improvement of the sensitivity of examination equipment and the change of people's living environment and diet, the rate of thyroid cancer has risen rapidly, which has increased nearly five folds in 10 years. The pathogenesis, clinical manifestation, biological behavior, treatment and prognosis of thyroid carcinoma of different pathological types are obviously different. Papillary thyroid carcinoma (PTC) can develop at any age, which accounts for about 90% of thyroid cancer. It progresses slowly and has favourable prognosis, but lymph node metastasis appears easily. Whether PTC is accompanied by lymph node metastasis has an important impact on its prognosis and outcome. The Raf murine sarcoma viral oncogene homolog B(BRAF)gene mutation plays a crucial role in PTC lymph node metastasis. Having an in-depth understanding of the specific role and mechanism of BRAF gene mutation in PTC is expected to provide new ideas for diagnosis and treatment of PTC.
Animals
;
Carcinoma, Papillary/genetics*
;
Humans
;
Lymphatic Metastasis
;
Mice
;
Mutation
;
Oncogenes
;
Proto-Oncogene Proteins B-raf/genetics*
;
Thyroid Cancer, Papillary/genetics*
;
Thyroid Neoplasms/genetics*
10.Identification and verification of key cancer genes associated with prognosis of colorectal cancer based on bioinformatics analysis.
Yi QIN ; Lu CHEN ; Lizhang CHEN
Journal of Central South University(Medical Sciences) 2021;46(10):1063-1070
OBJECTIVES:
The biomarkers targeting colorectal cancer (CRC) prognosis are short of high accuracy and sensitivity in clinic. Through bioinformatics analysis, we aim to identify and confirm a series of key genes referred to the diagnosis and prognosis of CRC.
METHODS:
GSE31905, GSE35279, and GSE41657 were selected as complete RNA sequencing data sets of CRC and colorectal mucosa (CRM) tissues from the NCBI-GEO database, and the differentially expressed genes (DEGs) were analyzed. The common DEGs in these 3 data sets were obtained by Venn map, and enriched by STRING network system and Cytoscape software. The Kaplan-Meier plotter website was used to verify the correlation between the enriched genes and the prognosis of CRC.
RESULTS:
For the whole RNA sequencing data sets of CRC and normal intestinal mucosa samples, the DEGs of CRC and CRM in the 3 data sets (|log
CONCLUSIONS
The above 11 genes verified by bioinformatics retrieval and analysis can predict the poor prognosis of CRC to a certain extent, and they provide a possible target for the diagnosis and treatment of CRC.
Biomarkers, Tumor/metabolism*
;
Colorectal Neoplasms/genetics*
;
Computational Biology
;
Formins
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Glycoproteins
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
Oncogenes
;
Prognosis
;
Protein Interaction Maps

Result Analysis
Print
Save
E-mail