1.Oligosarcoma: report of a case.
S XING ; X J QI ; Y XIA ; J WU ; W W FU
Chinese Journal of Pathology 2023;52(8):850-852
2.Experience Profiling of Fluorescence-Guided Surgery I: Gliomas
So Young JI ; Jin Wook KIM ; Chul Kee PARK
Brain Tumor Research and Treatment 2019;7(2):98-104
BACKGROUND: Numerous studies reported a usefulness of 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery (FGS) in high grade gliomas. However, fluorescence patterns and intensities are variable among gliomas. In this study, we report our extensive experience with FGS in various gliomas, focusing on epidemiological data of fluorescence patterns. METHODS: A total of 827 histologically proven glioma patients out of 900 brain tumor patients who had undergone FGS using 5-ALA during the period of 8.5 years between July 2010 and January 2019 were analyzed. Indications of FGS in glioma surgery are evidence for possible high-grade foci in putative gliomas in preoperative MRI. RESULTS: Among the 827 gliomas, the number of cases corresponding to 2016 World Health Organization (WHO) grade IV, III, II, and I are 528 (58.7%), 193 (21.4%), 87 (9.7%) and 19 (2.1%), respectively. In terms of fluorescence rate, grade IV gliomas showed positive fluorescence in 95.4% of cases including strong intensity in 85.6%. Grade III gliomas showed fluorescence in about half of cases (55.0%), but 45.0% of the cases showed no fluorescence at all. Anaplastic oligodendroglioma had a higher positive rate (63.9%) than anaplastic astrocytoma (46.2%). Both grade II and I gliomas still showed positive fluorescence in about one-fourth of cases (24.1% and 26.3% respectively). Among them ependymoma and pilocytic astrocytoma were fluorescence-prone tumors. CONCLUSION: This epidemiological data of 5-ALA fluorescence in various grades of glioma provides a basic reference to the clinical application of FGS with 5-ALA in glioma surgery.
Astrocytoma
;
Brain Neoplasms
;
Ependymoma
;
Fluorescence
;
Glioblastoma
;
Glioma
;
Humans
;
Magnetic Resonance Imaging
;
Oligodendroglioma
;
World Health Organization
3.The Korean Society for Neuro-Oncology (KSNO) Guideline for WHO Grade II Cerebral Gliomas in Adults: Version 2019.01
Young Zoon KIM ; Chae Yong KIM ; Chan Woo WEE ; Tae Hoon ROH ; Je Beom HONG ; Hyuk Jin OH ; Seok Gu KANG ; Shin Hyuk KANG ; Doo Sik KONG ; Sung Hwan KIM ; Se Hyuk KIM ; Se Hoon KIM ; Yu Jung KIM ; Eui Hyun KIM ; In Ah KIM ; Ho Sung KIM ; Jae Sung PARK ; Hyun Jin PARK ; Sang Woo SONG ; Kyoung Su SUNG ; Seung Ho YANG ; Wan Soo YOON ; Hong In YOON ; Jihae LEE ; Soon Tae LEE ; Sea Won LEE ; Youn Soo LEE ; Jaejoon LIM ; Jong Hee CHANG ; Tae Young JUNG ; Hye Lim JUNG ; Jae Ho CHO ; Seung Hong CHOI ; Hyoung Soo CHOI ; Do Hoon LIM ; Dong Sup CHUNG ;
Brain Tumor Research and Treatment 2019;7(2):74-84
BACKGROUND: There was no practical guideline for the management of patients with central nervous system tumor in Korea for many years. Thus, the Korean Society for Neuro-Oncology (KSNO), a multidisciplinary academic society, has developed the guideline for glioblastoma. Subsequently, the KSNO guideline for World Health Organization (WHO) grade II cerebral glioma in adults is established. METHODS: The Working Group was composed of 35 multidisciplinary medical experts in Korea. References were identified by searching PubMed, MEDLINE, EMBASE, and Cochrane CENTRAL databases using specific and sensitive keywords as well as combinations of keywords regarding diffuse astrocytoma and oligodendroglioma of brain in adults. RESULTS: Whenever radiological feature suggests lower grade glioma, the maximal safe resection if feasible is recommended globally. After molecular and histological examinations, patients with diffuse astrocytoma, isocitrate dehydrogenase (IDH)-wildtype without molecular feature of glioblastoma should be primarily treated by standard brain radiotherapy and adjuvant temozolomide chemotherapy (Level III) while those with molecular feature of glioblastoma should be treated following the protocol for glioblastomas. In terms of patients with diffuse astrocytoma, IDH-mutant and oligodendroglioma (IDH-mutant and 1p19q codeletion), standard brain radiotherapy and adjuvant PCV (procarbazine+lomustine+vincristine) combination chemotherapy should be considered primarily for the high-risk group while observation with regular follow up should be considered for the low-risk group. CONCLUSION: The KSNO's guideline recommends that WHO grade II gliomas should be treated by maximal safe resection, if feasible, followed by radiotherapy and/or chemotherapy according to molecular and histological features of tumors and clinical characteristics of patients.
Adult
;
Astrocytoma
;
Brain
;
Central Nervous System
;
Drug Therapy
;
Drug Therapy, Combination
;
Follow-Up Studies
;
Glioblastoma
;
Glioma
;
Humans
;
Isocitrate Dehydrogenase
;
Korea
;
Oligodendroglioma
;
Radiotherapy
;
World Health Organization
4.The Korean Society for Neuro-Oncology (KSNO) Guideline for WHO Grade III Cerebral Gliomas in Adults: Version 2019.01
Young Zoon KIM ; Chae Yong KIM ; Jaejoon LIM ; Kyoung Su SUNG ; Jihae LEE ; Hyuk Jin OH ; Seok Gu KANG ; Shin Hyuk KANG ; Doo Sik KONG ; Sung Hwan KIM ; Se Hyuk KIM ; Se Hoon KIM ; Yu Jung KIM ; Eui Hyun KIM ; In Ah KIM ; Ho Sung KIM ; Tae Hoon ROH ; Jae Sung PARK ; Hyun Jin PARK ; Sang Woo SONG ; Seung Ho YANG ; Wan Soo YOON ; Hong In YOON ; Soon Tae LEE ; Sea Won LEE ; Youn Soo LEE ; Chan Woo WEE ; Jong Hee CHANG ; Tae Young JUNG ; Hye Lim JUNG ; Jae Ho CHO ; Seung Hong CHOI ; Hyoung Soo CHOI ; Je Beom HONG ; Do Hoon LIM ; Dong Sup CHUNG ;
Brain Tumor Research and Treatment 2019;7(2):63-73
BACKGROUND: There was no practical guideline for the management of patients with central nervous system tumor in Korea in the past. Thus, the Korean Society for Neuro-Oncology (KSNO), a multidisciplinary academic society, developed the guideline for glioblastoma successfully and published it in Brain Tumor Research and Treatment, the official journal of KSNO, in April 2019. Recently, the KSNO guideline for World Health Organization (WHO) grade III cerebral glioma in adults has been established. METHODS: The Working Group was composed of 35 multidisciplinary medical experts in Korea. References were identified by searches in PubMed, MEDLINE, EMBASE, and Cochrane CENTRAL databases using specific and sensitive keywords as well as combinations of keywords. Scope of the disease was confined to cerebral anaplastic astrocytoma and oligodendroglioma in adults. RESULTS: Whenever radiological feature suggests high grade glioma, maximal safe resection if feasible is globally recommended. After molecular and histological examinations, patients with anaplastic astrocytoma, isocitrate dehydrogenase (IDH)-mutant should be primary treated by standard brain radiotherapy and adjuvant temozolomide chemotherapy whereas those with anaplastic astrocytoma, NOS, and anaplastic astrocytoma, IDH-wildtype should be treated following the protocol for glioblastomas. In terms of anaplastic oligodendroglioma, IDH-mutant and 1p19q-codeletion, and anaplastic oligodendroglioma, NOS should be primary treated by standard brain radiotherapy and neoadjuvant or adjuvant PCV (procarbazine, lomustine, and vincristine) combination chemotherapy. CONCLUSION: The KSNO's guideline recommends that WHO grade III cerebral glioma of adults should be treated by maximal safe resection if feasible, followed by radiotherapy and/or chemotherapy according to molecular and histological features of tumors.
Adult
;
Astrocytoma
;
Brain
;
Brain Neoplasms
;
Central Nervous System
;
Drug Therapy
;
Drug Therapy, Combination
;
Glioblastoma
;
Glioma
;
Humans
;
Isocitrate Dehydrogenase
;
Korea
;
Lomustine
;
Oligodendroglioma
;
Radiotherapy
;
World Health Organization
5.von Willebrand Factor Gene Expression in Primary Lower Grade Glioma: Mutually Co-Occurring Mutations in von Willebrand Factor, ATRX, and TP53
Steven LEHRER ; Peter H RHEINSTEIN ; Sheryl GREEN ; Kenneth E ROSENZWEIG
Brain Tumor Research and Treatment 2019;7(1):33-38
BACKGROUND: Venous thromboembolism is a common complication in patients with glioma. The clotting factor von Willebrand factor (VWF) is a highly adhesive procoagulant molecule that mediates platelet adhesion to endothelial and subendothelial surfaces. In the current analysis, we examined The Cancer Genome Atlas (TCGA) data to assess the VWF gene in patients with lower grade gliomas. METHODS: For newly diagnosed gliomas, we evaluated the association between VWF and overall survival in the Genomic Data Commons TCGA Lower Grade Glioma (LGG) dataset in TCGA. Simple statistics were calculated to identify patterns of mutual exclusivity or co-occurrence of VWF mutations. For each pair of query genes an odds ratio was calculated that indicates the likelihood that the mutations in the two genes are mutually exclusive or co-occurrent across the selected cases. To determine whether the identified relationship was significant for a gene pair, Fisher's exact test was performed. RESULTS: Lower grade gliomas with less VWF gene expression had significantly better survival than those with more VWF gene expression (hazard ratio 0.64, 95% confidence interval 0.44 to 0.92, p=0.015 log rank test). When we analyzed the data with Cox regression, VWF expression had a significant effect on survival (p=0.02) that was unrelated to the effect of IDH1 expression (p=0.062), TP53 expression (p=0.135), independent of ATRX expression (p=0.021) and histology (astrocytoma versus oligoastrocytoma and oligodendroglioma, p=0.002). VWF mutations significantly co-occur with mutations in TP53 and ATRX (p<0.001). CONCLUSION: The deleterious prognostic effect of VWF expression and its co-occurrent mutations with TP53 and ATRX in lower grade gliomas are not surprising, given VWF's role in other cancers. Therefore, VWF gene expression may be a clinically important risk marker in lower grade glioma.
Adhesives
;
Blood Platelets
;
Dataset
;
Gene Expression
;
Genes, vif
;
Genome
;
Glioblastoma
;
Glioma
;
Humans
;
Odds Ratio
;
Oligodendroglioma
;
Venous Thromboembolism
;
von Willebrand Factor
6.Reclassification of Mongolian Diffuse Gliomas According to the Revised 2016 World Health Organization Central Nervous System Tumor Classification
Enkhee OCHIRJAV ; Bayarmaa ENKHBAT ; Tuul BALDANDORJ ; Gheeyoung CHOE
Journal of Pathology and Translational Medicine 2019;53(5):298-307
BACKGROUND: The 2016 World Health Organization (WHO) classification of central nervous system (CNS) tumors has been modified to incorporate the IDH mutation and 1p/19q co-deletion in the diagnosis of diffuse gliomas. In this study, we aimed to evaluate the feasibility and prognostic significance of the revised 2016 WHO classification of CNS tumors in Mongolian patients with diffuse gliomas. METHODS: A total of 124 cases of diffuse gliomas were collected, and tissue microarray blocks were made. IDH1 mutation was tested using immunohistochemistry, and 1p/19q co-deletion status was examined using fluorescence in situ hybridization analysis. RESULTS: According to the 2016 WHO classification, 124 cases of diffuse brain glioma were reclassified as follows: 10 oligodendroglioma, IDHmut and 1p/19q co-deleted; three anaplastic oligodendroglioma, IDHmut and 1p/19q co-deleted; 35 diffuse astrocytoma, IDHmut, 11 diffuse astrocytoma, IDHwt, not otherwise specified (NOS); 22 anaplastic astrocytoma, IDHmut, eight anaplastic astrocytoma, IDHwt, NOS; and 35 glioblastoma, IDHwt, NOS, respectively. The 2016 WHO classification presented better prognostic value for overall survival in patients with grade II tumors than traditional histological classification. Among patients with grade II tumors, those with oligodendroglioma IDHmut and 1p/19q co-deleted and diffuse astrocytoma IDHmut showed significantly higher survival than those with diffuse astrocytoma IDHwt, NOS (p<.01). CONCLUSIONS: Mongolian diffuse gliomas could be reclassified according to the new 2016 WHO classification. Reclassification revealed substantial changes in diagnosis of both oligodendroglial and astrocytic entities. We have confirmed that the revised 2016 WHO CNS tumor classification has prognostic significance in Mongolian patients with diffuse gliomas, especially those with grade II tumors.
Astrocytoma
;
Brain
;
Central Nervous System
;
Chromosome Deletion
;
Classification
;
Diagnosis
;
Fluorescence
;
Glioblastoma
;
Glioma
;
Global Health
;
Humans
;
Immunohistochemistry
;
In Situ Hybridization
;
Isocitrate Dehydrogenase
;
Nervous System Neoplasms
;
Nervous System
;
Oligodendroglioma
;
World Health Organization
7.Reclassification of Mixed Oligoastrocytic Tumors Using a Genetically Integrated Diagnostic Approach
Seong Ik KIM ; Yujin LEE ; Jae Kyung WON ; Chul Kee PARK ; Seung Hong CHOI ; Sung Hye PARK
Journal of Pathology and Translational Medicine 2018;52(1):28-36
BACKGROUND: Mixed gliomas, such as oligoastrocytomas (OA), anaplastic oligoastrocytomas, and glioblastomas (GBMs) with an oligodendroglial component (GBMO) are defined as tumors composed of a mixture of two distinct neoplastic cell types, astrocytic and oligodendroglial. Recently, mutations ATRX and TP53, and codeletion of 1p/19q are shown to be genetic hallmarks of astrocytic and oligodendroglial tumors, respectively. Subsequent molecular analyses of mixed gliomas preferred the reclassification to either oligodendroglioma or astrocytoma. This study was designed to apply genetically integrated diagnostic criteria to mixed gliomas and determine usefulness and prognostic value of new classification in Korean patients. METHODS: Fifty-eight cases of mixed OAs and GBMOs were retrieved from the pathology archives of Seoul National University Hospital from 2004 to 2015. Reclassification was performed according to genetic and immunohistochemical properties. Clinicopathological characteristics of each subgroup were evaluated. Overall survival was assessed and compared between subgroups. RESULTS: We could reclassify all mixed OAs and GBMOs into either astrocytic or oligodendroglial tumors. Notably, 29 GBMOs could be reclassified into 11 cases of GBM, IDH-mutant, 16 cases of GBM, IDH-wildtype, and two cases of anaplastic oligodendroglioma, IDH mutant. Overall survival was significantly different among these new groups (p<.001). Overall survival and progression-free survival were statistically better in gliomas with IDH mutation, ATRX mutation, no microscopic necrosis, and young patient age (cut off, 45 years old). CONCLUSIONS: Our results strongly suggest that a genetically integrated diagnosis of glioma better reflects prognosis than former morphology-based methods.
Astrocytoma
;
Classification
;
Diagnosis
;
Disease-Free Survival
;
Genetics
;
Glioblastoma
;
Glioma
;
Humans
;
Necrosis
;
Oligodendroglioma
;
Pathology
;
Prognosis
;
Seoul
8.Accidental intracerebral injection and seizure during scalp nerve blocks for awake craniotomy in a previously craniotomized patient: a case report.
Woo Kyung LEE ; Hyunzu KIM ; Myung Il BAE ; Seung Ho CHOI ; Kyeong Tae MIN
Korean Journal of Anesthesiology 2018;71(6):483-485
A 34-year-old man who previously underwent a craniotomy due to oligodendroglioma was admitted with a diagnosis of recurrent brain tumor. An awake craniotomy was planned. Approximately 15 minutes after completing the scalp nerve block, his upper torso suddenly moved and trembled for 10 seconds, suggesting a generalized clonic seizure. He recovered gradually and fully in 55 minutes without any neurological sequelae. The emergency computed tomography scan revealed a localized fluid collection and small intracerebral hemorrhage nearby in the temporoparietal cortex beneath the skull defect. He underwent surgery under general anesthesia at 8 hours after the seizure and was discharged from the hospital after 10 days. This report documents the first case of generalized seizure that was caused by the accidental intracerebral injection of local anesthetics. Although the patient recovered completely, the clinical implications regarding the scalp infiltration technique in a patient with skull defects are discussed.
Adult
;
Anesthesia, General
;
Anesthetics, Local
;
Brain Neoplasms
;
Cerebral Hemorrhage
;
Craniotomy*
;
Diagnosis
;
Emergencies
;
Humans
;
Nerve Block*
;
Oligodendroglioma
;
Scalp*
;
Seizures*
;
Skull
;
Torso
9.Efficacy of Gamma Knife Radiosurgery for Recurrent High-Grade Gliomas with Limited Tumor Volume
Young Jun CHEON ; Tae Young JUNG ; Shin JUNG ; In Young KIM ; Kyung Sub MOON ; Sa Hoe LIM
Journal of Korean Neurosurgical Society 2018;61(4):516-524
OBJECTIVE: This study aims to determine whether gamma knife radiosurgery (GKR) improves survival in patients with recurrent highgrade gliomas.METHODS: Twenty nine patients with recurrent high-grade glioma underwent 38 GKR. The male-to-female ratio was 10 : 19, and the median age was 53.8 years (range, 20–75). GKR was performed in 11 cases of recurrent anaplastic oligodendrogliomas, five anaplastic astrocytomas, and 22 glioblastomas. The median prescription dose was 16 Gy (range, 10–24), and the median target volume was 7.0 mL (range, 1.1–15.7). Of the 29 patients, 13 (44.8%) received concurrent chemotherapy. We retrospectively analyzed the progression-free survival (PFS) and overall survival (OS) after GKR depending on the Eastern Cooperative Oncology Group (ECOG) performance status (PS), pathology, concurrent chemotherapy, radiation dose, and target tumor volume.RESULTS: Starting from when the patients underwent GKR, the median PFS and OS were 5.0 months (range, 1.1–28.1) and 13.0 months (range, 1.1–75.1), respectively. On univariate analysis, the median PFS was significantly long in patients with anaplastic oligodendroglioma, ECOG PS 1, and target tumor volume less than 10 mL (p < 0.05). Meanwhile, on multivariate analysis, patients with ECOG PS 1 and target tumor volume less than 10 mL showed improved PFS (p=0.043 and p=0.007, respectively). The median OS was significantly increased in patients with ECOG PS 1 and tumor volume less than 10 mL on univariate and multivariate analyses (p < 0.05).CONCLUSION: GKR could be an additional treatment option in recurrent high-grade glioma, particularly in patients with good PS and limited tumor volume.
Astrocytoma
;
Disease-Free Survival
;
Drug Therapy
;
Glioblastoma
;
Glioma
;
Humans
;
Multivariate Analysis
;
Oligodendroglioma
;
Pathology
;
Prescriptions
;
Radiosurgery
;
Recurrence
;
Retrospective Studies
;
Tumor Burden
10.Molecular Testing of Brain Tumor.
Sung Hye PARK ; Jaekyung WON ; Seong Ik KIM ; Yujin LEE ; Chul Kee PARK ; Seung Ki KIM ; Seung Hong CHOI
Journal of Pathology and Translational Medicine 2017;51(3):205-223
The World Health Organization (WHO) classification of central nervous system (CNS) tumors was revised in 2016 with a basis on the integrated diagnosis of molecular genetics. We herein provide the guidelines for using molecular genetic tests in routine pathological practice for an accurate diagnosis and appropriate management. While astrocytomas and IDH-mutant (secondary) glioblastomas are characterized by the mutational status of IDH, TP53, and ATRX, oligodendrogliomas have a 1p/19q codeletion and mutations in IDH, CIC, FUBP1, and the promoter region of telomerase reverse transcriptase (TERTp). IDH-wildtype (primary) glioblastomas typically lack mutations in IDH, but are characterized by copy number variations of EGFR, PTEN, CDKN2A/B, PDGFRA, and NF1 as well as mutations of TERTp. High-grade pediatric gliomas differ from those of adult gliomas, consisting of mutations in H3F3A, ATRX, and DAXX, but not in IDH genes. In contrast, well-circumscribed low-grade neuroepithelial tumors in children, such as pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma, often have mutations or activating rearrangements in the BRAF, FGFR1, and MYB genes. Other CNS tumors, such as ependymomas, neuronal and glioneuronal tumors, embryonal tumors, meningothelial, and other mesenchymal tumors have important genetic alterations, many of which are diagnostic, prognostic, and predictive markers and therapeutic targets. Therefore, the neuropathological evaluation of brain tumors is increasingly dependent on molecular genetic tests for proper classification, prediction of biological behavior and patient management. Identifying these gene abnormalities requires cost-effective and high-throughput testing, such as next-generation sequencing. Overall, this paper reviews the global guidelines and diagnostic algorithms for molecular genetic testing of brain tumors.
Adult
;
Astrocytoma
;
Brain Neoplasms*
;
Brain*
;
Central Nervous System
;
Child
;
Classification
;
Diagnosis
;
Ependymoma
;
Ganglioglioma
;
Genes, myb
;
Glioblastoma
;
Glioma
;
Humans
;
Molecular Biology
;
Neoplasms, Neuroepithelial
;
Neurons
;
Oligodendroglioma
;
Promoter Regions, Genetic
;
Telomerase
;
World Health Organization

Result Analysis
Print
Save
E-mail