1.An injectable bioceramics-containing composite hydrogel promoting innervation for pulp-dentin complex repair.
Xingyu TAO ; Hongjian ZHANG ; Peng MEI ; Jinzhou HUANG ; Bing FANG ; Zhiguang HUAN ; Chengtie WU
International Journal of Oral Science 2025;17(1):66-66
Dental pulp-dentin complex defects remain a major unresolved problem in oral medicines. Clinical therapeutic methods including root canal therapy and vital pulp therapy are both considered as conservative strategies, which are incapable of repairing the pulp-dentin complex defects. Although biomaterial-based strategies show remarkable progress in antibacterial, anti-inflammatory, and pulp regeneration, the important modulatory effects of nerves within pulp cavity have been greatly overlooked, making it challenging to achieve functional pulp-dentin complex regeneration. In this study, we propose an injectable bioceramics-containing composite hydrogel in combination of Li-Ca-Si (LCS) bioceramics and gelatin methacrylate matrix with photo-crosslinking properties. Due to the sustained release of bioactive Li, Ca and Si ions from LCS, the composite hydrogels possess multiple functions of promoting the neurogenic differentiation of Schwann cells, odontogenic differentiation of dental pulp stem cells, and neurogenesis-odontogenesis couples in vitro. In addition, the in vivo results showed that LCS-containing composite hydrogel can significantly promote the pulp-dentin complex repair. More importantly, LCS bioceramics-containing composite hydrogel can induce the growth of nerve fibers, leading to the re-innervation of pulp tissues. Taken together, the study suggests that LCS bioceramics can induce the innervation of pulp-dentin complex repair, offering a referable strategy of designing multifunctional filling materials for functional periodontal tissue regeneration.
Dental Pulp/drug effects*
;
Hydrogels/pharmacology*
;
Animals
;
Ceramics/pharmacology*
;
Dentin/drug effects*
;
Biocompatible Materials/pharmacology*
;
Rats
;
Gelatin
;
Regeneration/drug effects*
;
Cell Differentiation/drug effects*
;
Injections
;
Humans
;
Odontogenesis/drug effects*
2.Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.
Weilin LIU ; Can SU ; Caiyun CUI
West China Journal of Stomatology 2025;43(1):37-45
OBJECTIVES:
The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.
METHODS:
APCs were isolated and cultured in vitro, and the cell origin was identified by flow cytometry. The culture medium was prepared with 1 mg/mL 45S5, and its pH and ion concentration were determined. The experiments were divided into control, 45S5, and 3-methyladenine (3-MA) 45S5 groups. In the 45S5 group, APCs were induced to culture with 1 mg/mL 45S5. In the 3-MA 45S5 group, the autophagy inhibitor 3-MA was added to 1 mg/mL 45S5. Protein immunoblotting assay (Western blot) was used to detect the expression of autophagy-associated proteins of microtubule-associated protein 1 light-chain 3β (LC3B) and P62 after 24 h of induction culture in each group. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of bone sialoprotein (BSP), Runt-related transcription factor 2 (Runx2), dentin sialophosphoprotein (DSPP), and dentin matrix protein-1 (DMP-1) after 7 d of induction culture. Cellular alkaline phosphatase (ALP) staining analyzed cellular ALP activity at 7 d of induction, and alizarin red staining evaluated the formation of mineralized nodules at 21 d of induction.
RESULTS:
The pH of the 45S5 extract culture medium was 8.65±0.01, which was not significantly different from that of the control group (P>0.05). The silicon ion concentration of the 45S5 induction culture medium was (1.56±0.07) mmol/L, which was higher than that of the control group (0.08±0.01) mmol/L (P<0.05). The calcium ion concentration of the 45S5 induction culture was (1.57±0.15) mmol/L, which was not significantly different from that of the control group (P>0.05). Western blot results showed that LC3B-Ⅱ/Ⅰ ratio increased and P62 expression decreased in the 45S5 group compared with those in the control group (P<0.05). By contrast, the ratio decreased and the expression increased in the 3-MA 45S5 group compared with those in the 45S5 group (P<0.05). RT-qPCR results showed that the expression of BSP, Runx2, DMP-1, and DSPP enhanced in the 45S5 group compared with that in the control group (P<0.05), but the expression decreased in the 3-MA 45S5 group compared with that in the 45S5 group (P<0.05). Semi-quantitative analysis of ALP staining and alizarin red staining showed that the ALP activity was enhanced, and the formation mineralized nodule increased in the 45S5 group compared with those in the control group. The ALP activity weakened, and the formation mineralized nodules were reduced in the 3-MA 45S5 group compared with that those in the 45S5 group.
CONCLUSIONS
Cell autophagy participates in the odontogenic differentiation of APCs induced by 1 mg/mL 45S5 in vitro.
Autophagy/drug effects*
;
Cell Differentiation/drug effects*
;
Odontogenesis/drug effects*
;
Dental Papilla/cytology*
;
Humans
;
Microtubule-Associated Proteins/metabolism*
;
Glass/chemistry*
;
Cells, Cultured
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Extracellular Matrix Proteins/metabolism*
;
Ceramics/pharmacology*
;
Adenine/pharmacology*
;
Sialoglycoproteins/metabolism*
;
Phosphoproteins/metabolism*
;
Integrin-Binding Sialoprotein/metabolism*
;
Alkaline Phosphatase/metabolism*
;
RNA-Binding Proteins
3.Retinoic acid signal pathway regulation of zebra fish tooth development through manipulation of the differentiation of neural crest.
Xin LIU ; Xing HUANG ; Zhiyun XU ; Deqin YANG
West China Journal of Stomatology 2016;34(2):115-120
OBJECTIVETo investigate the mechanism of retinoic acid (RA) signal in dental evolution, RA is used to explore the influence of the mechanism on neural crest's migration during the early stage of zebra fish embryos.
METHODSWe divided embryos of wild type and transgenic line zebra fish into three groups. 1 x 10(-7) to 6 x 10(-7) mol x L(-1) RA and 1 x 10(-7) mo x L(-1) 4-diethylaminobenzaldehyde (DEAB) were added into egg water at 24 hpf for 9 h. Dimethyl sulfoxid (DMSO) with the concentration was used as control group. Then, antisense probes of dlx2a, dlx2b, and barxl were formulated to perform whole-mount in situ hybridization to check the expressions of the genes in 48 hpf to 72 hpf embryos. We observed fluorescence of transgenic line in 4 dpf embryos.
RESULTSWe obtained three mRNA probes successfully. Compared with DMSO control group, a low concentration (1 x 10(-7) mol x L(-1)) of RA could up-regulate the expression of mRNA (barx1, dlx2a) in neural crest. Obvious migration trend was observed toward the pharyngeal arch in which teeth adhered. Transgenic fish had spreading fluorescence tendency in pharyngeal arch. However, a high concentration (4 x 10(-7) mol x L(-1)) of RA malformed the embryos and killed them after treatment. One third of the embryos of middle concentration (3 x 10(-7) mo x L(-1)) exhibited delayed development. DEAB resulted in neural crest dysplasia. The expression of barxl and dlx2a were suppressed, and the appearance of dlx2b in tooth was delayed.
CONCLUSIONRA signal pathway can regulate the progenitors of tooth by controlling the growth of the neural crest and manipulating tooth development
Animals ; Branchial Region ; Cell Differentiation ; drug effects ; Embryo, Nonmammalian ; drug effects ; embryology ; metabolism ; In Situ Hybridization ; Neural Crest ; drug effects ; Odontogenesis ; Signal Transduction ; Tooth ; drug effects ; embryology ; metabolism ; Tretinoin ; pharmacology ; Zebrafish ; embryology ; genetics ; metabolism

Result Analysis
Print
Save
E-mail