1.Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway.
Wen ZHENG ; Wenjun LI ; Yini ZENG ; Hui YUAN ; Heng YANG ; Ru CHEN ; Anding ZHU ; Jinze WU ; Zhi SONG ; Wenguang YAN
Journal of Central South University(Medical Sciences) 2023;48(5):648-662
OBJECTIVES:
Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).
METHODS:
Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.
RESULTS:
The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.
CONCLUSIONS
Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
Animals
;
Rats
;
Blood-Brain Barrier/metabolism*
;
Brain Ischemia
;
Claudin-5/metabolism*
;
Infarction, Middle Cerebral Artery/metabolism*
;
Ischemic Stroke/metabolism*
;
Occludin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Reperfusion Injury/metabolism*
2.Porphyromonas gingivalis infection causes umbilical vein endothelial barrier dysfunction in vitro by down-regulating ZO-1, occludin and VE-cadherin expression.
Jiao ZENG ; Xin Zhu LI ; Lin Ying YIN ; Ting CHEN ; Jin HOU
Journal of Southern Medical University 2023;43(2):287-293
OBJECTIVE:
To explore the molecular mechanisms of Porphyromonas gingivalis infection-induced umbilical vein endothelial barrier dysfunction in vitro.
METHODS:
Human umbilical vein endothelial cells (HUVECs) were cultured in vitro, and after the formation of the endothelial barrier, the cells were infected with P. gingivals at a multiplicity of infection (MOI). The transepithelial electrical resistance (TEER) of the cell barrier was measured, and FITC-dextran trans-endothelial permeability assay and bacterial translocation assay were performed to assess the endothelial barrier function. The expression levels of cell junction proteins including ZO-1, occludin and VE-cadherin in the cells were examined by qRT-PCR and Western blotting.
RESULTS:
In freshly seeded HUVECs, TEER increased until reaching the maximum on Day 5 (94 Ωcm2), suggesting the formation of the endothelial barrier. P. gingivals infection caused an increase of the permeability of the endothelial barrier as early as 0.5 h after bacterial inoculation, and the barrier function further exacerbated with time, as shown by significantly lowered TEER, increased permeability of FITC-dextran (40 000/70 000), and increased translocation of SYTO9-E. coli cross the barrier. MTT assay suggested that P. gingivals infection did not significantly affect the proliferation of HUVECs (P>0.05), but in P. gingivalsinfected cells, the expressions of ZO-1, occludin and VE-cadherin increased significantly at 24 and 48 h after bacterial inoculation (P < 0.05).
CONCLUSION
P. gingivals may disrupt the endothelial barrier function by down-regulating the expressions of the cell junction proteins (ZO-1, occludin, VE-cadherin) and increasing the permeability of the endothelial barrier.
Humans
;
Cadherins/metabolism*
;
Escherichia coli/metabolism*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Occludin
;
Porphyromonas gingivalis/metabolism*
;
Umbilical Veins/metabolism*
3.Soybean isoflavones alleviate cerebral ischemia/reperfusion injury in rats by inhibiting ferroptosis and inflammatory cascade reaction.
Shai LI ; Li LI ; Si Min MIN ; Sai Sai LIU ; Zhi Wen QIN ; Zhi Shang XIONG ; Jian Guo XU ; Bo Wen WANG ; Du Shan DING ; Shi Di ZHAO
Journal of Southern Medical University 2023;43(2):323-330
OBJECTIVE:
To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability.
METHODS:
A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry.
RESULTS:
The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01).
CONCLUSION
SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Matrix Metalloproteinase 9/metabolism*
;
Soybeans/metabolism*
;
Occludin/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ferroptosis
;
Blood-Brain Barrier/ultrastructure*
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Isoflavones/therapeutic use*
;
Infarction, Middle Cerebral Artery
4.Zuogui Jiangtang Qinggan Prescription promotes recovery of intestinal mucosal barrier in mice with type 2 diabetes mellitus and nonalcoholic fatty liver disease by improving intestinal flora homeostasis.
Jun-Ju ZOU ; Hong LI ; Min ZHOU ; Qiu-Qing HUANG ; Yong-Jun WU ; Rong YU
China Journal of Chinese Materia Medica 2023;48(2):525-533
This study aimed to investigate the recovery effect of Zuogui Jiangtang Qinggan Prescription on intestinal flora homeostasis control and intestinal mucosal barrier in type 2 diabetes mellitus(T2DM) with nonalcoholic fatty liver disease(NAFLD) induced by a high-fat diet. NAFLD was established in MKR transgenic mice(T2DM mice) by a high-fat diet(HFD), and subsequently treated for 8 weeks with Zuogui Jiangtang Qinggan Prescription(7.5, 15 g·kg~(-1)) and metformin(0.067 g·kg~(-1)). Triglyceride and liver function were assessed using serum. The hematoxylin-eosin(HE) staining and Masson staining were used to stain the liver tissue, while HE staining and AB-PAS staining were used to stain the intestine tissue. 16S rRNA sequencing was utilized to track the changes in the intestinal flora of the mice in each group. Polymerase chain reaction(PCR) and immunofluorescence were used to determine the protein and mRNA expression levels of ZO-1, Occludin, and Claudin-1. The results demonstrated that Zuogui Jiangtang Qinggan Prescription increased the body mass of T2DM mice with NAFLD and decreased the hepatic index. It down-regulated the serum biomarkers of liver function and dyslipidemia such as alanine aminotransferase(ALT), aspartate transaminase(AST), and triglycerides(TG), increased insulin sensitivity, and improved glucose tolerance. According to the results of 16S rRNA sequencing, the Zuogui Jiangtang Qinggan Prescription altered the composition and abundance of the intestinal flora, increasing the relative abundances of Muribaculaceae, Lactobacillaceae, Lactobacillus, Akkermansia, and Bacteroidota and decreasing the relative abundances of Lachnospiraceae, Firmicutes, Deslfobacteria, Proteobacteria, and Desulfovibrionaceae. According to the pathological examination of the intestinal mucosa, Zuogui Jiangtang Qinggan Prescritpion increased the expression levels of the tight junction proteins ZO-1, Occludin, and Claudin-1, promoted intestinal mucosa repair, protected intestinal villi, and increased the height of intestinal mucosa villi and the number of goblet cells. By enhancing intestinal mucosal barrier repair and controlling intestinal microbiota homeostasis, Zuogui Jiangtang Qinggan Prescription reduces intestinal mucosal damage induced by T2DM and NAFLD.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Diabetes Mellitus, Type 2/metabolism*
;
Occludin/pharmacology*
;
Claudin-1/metabolism*
;
Intestinal Mucosa
;
Liver
;
Triglycerides/metabolism*
;
Diet, High-Fat
;
Homeostasis
;
Mice, Inbred C57BL
5.The role of Nrf2 in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated MMP9.
Jing SUN ; Xing Bo XU ; Hong Yue SU ; Li Cheng YAN ; Yan Shu ZHANG ; Li Jin ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):2-7
Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.
Rats
;
Animals
;
Matrix Metalloproteinase 9/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Tight Junction Proteins/metabolism*
;
Occludin/pharmacology*
;
Choroid Plexus/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Lanthanum/pharmacology*
;
Epithelial Cells
;
Zonula Occludens-1 Protein/metabolism*
;
Phosphoproteins/pharmacology*
6.Mechanism of Shengmai Injection on Anti-Sepsis and Protective Activities of Intestinal Mucosal Barrier in Mice.
Juan LU ; Yue YU ; Xiao-Jing WANG ; Rui-Ping CHAI ; Xin-Kai LYU ; Ming-Hui DENG ; Mei-Geng HU ; Yun QI ; Xi CHEN
Chinese journal of integrative medicine 2022;28(9):817-822
OBJECTIVE:
To study the mechanism of Shengmai Injection (SMI, ) on anti-sepsis and protective activities of intestinal mucosal barrier.
METHODS:
The contents of 11 active components of SMI including ginsenoside Rb1, Rb2, Rb3, Rd, Re, Rf, Rg1, Rg2, ophioposide D, schisandrol A and schisantherin A were determined using ultra-performance liquid chromatography. Fifty mice were randomly divided into the blank, the model, the low-, medium- and high-dose SMI groups (0.375, 0.75, 1.5 mL/kg, respectively) by random number table, 10 mice in each group. In SMI group, SMI was administrated to mice daily via tail vein injection for 3 consecutive days, while the mice in the blank and model groups were given 0.1 mL of normal saline. One hour after the last SMI administration, except the blank group, the mice in other groups were intraperitoneally injected with lipopolysaccharide (LPS) saline solution (2 mL/kg) at a dosage of 5 mL/kg for development of endotoxemia mice model. The mice in the blank group were given the same volume of normal saline. Inflammatory factors including interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α), interleukin (IL)-2 and IL-10 were measured by flow cytometry. Myosin light-chain kinase (MLCK), nuclear factor κB (NF-κB) levels, and change of Occludin proteins in jejunum samples were analyzed by Western blot.
RESULTS:
The decreasing trends of INF-γ, TNF-α and IL-2 were found in serum of SMI treatment groups. In SMI-treated mice, the content of Occludin increased and MLCK protein decreased compared with the model group (P<0.05 or P<0.01). The content of cellular and nuclear NF-κB did not change significantly (P>0.05).
CONCLUSION
SMI may exert its anti-sepsis activity mainly through NF-κB-pro-inflammatory factor-MLCK-TJ cascade.
Animals
;
Drug Combinations
;
Drugs, Chinese Herbal
;
Mice
;
NF-kappa B/metabolism*
;
Occludin
;
Saline Solution
;
Sepsis/drug therapy*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Effects of butyphthalide on microglia polarization after intracerebral hemorrhage and the underlying mechanisms.
Yiliu ZHANG ; Wei LU ; Niangui XU
Journal of Central South University(Medical Sciences) 2022;47(6):717-729
OBJECTIVES:
Because intracerebral hemorrhage (ICH) has high morbidity, disability and mortality, it is significant to find new and effective treatments for ICH. This study aims to explore the effect of butyphthalide (NBP) on neuroinflammation secondary to ICH and microglia polarization.
METHODS:
A total of 48 healthy male SD rats were randomly divided into 6 groups: a sham 24 h group, a sham 72 h group, an ICH 24 h group, an ICH 72 h group, an ICH+NBP 24 h group, and an ICH+NBP 72 h group (8 rats per group). After operation, the neurological deficiencies were assessed based on improved Garcia scores and corner test. The expressions of Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), aquaporin-4 (AQP4), zonula occludens-1 (ZO-1), occludin, CD68, CD86, and CD206 were observed by Western blotting. Inflammatory cytokines were detected by ELISA. The immunofluorescence was to detect the polarization of microglia.
RESULTS:
1) Compared with the sham groups, the expression of TLR4 (24 h: P<0.05; 72 h: P<0.01), NF-κB (both P<0.01) and Nrf2 (both P<0.01) in the perihematoma of the ICH group was increased, leading to microglia activation (P<0.01). The expressions of IL-6 (24 h: P<0.05; 72 h: P<0.01) and TNF-α (both P<0.01), the pro-inflammatory cytokines were up-regulated, and the expression of anti-inflammatory cytokine IL-4 was down-regulated (both P<0.01). Besides, the expression of AQP4 was enhanced (both P<0.01). The protein level of tightly connected proteins (including ZO-1, occludin) was decreased (all P<0.01). The neurological function of the rats in the ICH group was impaired in the 2 time points (both P<0.01). 2) Compared with the sham group at 24 h and 72 h after the intervention of NBP, the expressions of TLR4 (both P<0.05) and NF-κB (both P<0.01) were significantly declined, and the expression of Nrf2 was further enhanced (both P<0.05) in the perihematoma of the ICH+NBP group. Furthermore, the expression of M1 microglia marker was inhibited (P<0.05), and the polarization of microglia to the M2 phenotype was promoted (P<0.01). 3) In terms of inflammation after ICH, the IL-4 expression in the ICH+NBP group was increased compared with the ICH group (24 h: P<0.05; 72 h: P<0.01); the expression of IL-6 was decreased significantly in the ICH+NBP 72 h group (P<0.01); the level of AQP4 was declined significantly in the ICH+NBP 24 h group (P<0.05), there was a downward trend in the 72-hour intervention group but without significant statistical difference. 4) Compared with the ICH group, the ZO-1 protein levels were increased (24 h: P<0.05; 72 h: P<0.01), and the symptoms of nerve defect were improved eventually (both P<0.05) in the ICH+NBP groups.
CONCLUSIONS
After ICH, the TLR4/NF-κB pathway is activated. The M1 microglia is up-regulated along with the release of detrimental cytokines, while the anti-inflammatory cytokines are down-regulated. The expression of AQP4 is increased, the tight junction proteins from the blood-brain barrier (BBB) is damaged, and the neurological function of rats is impaired. On the contrary, NBP may regulate microglia polarization to M2 phenotype and play a role in the neuroprotective effect mediated via inhibiting TLR4/NF-κB and enhancing Nrf2 pathways, which relieves the neuroinflammation, inhibits the expression of AQP4, repairs BBB, and improves neurological functional defects.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Cerebral Hemorrhage
;
Cytokines/metabolism*
;
Interleukin-4/therapeutic use*
;
Interleukin-6/metabolism*
;
Male
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
NF-kappa B/metabolism*
;
Occludin/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 4/genetics*
8.Preliminary study on time-dependent changes of intestinal tract and brain-gut axis in mice model of Parkinson's disease induced by paraquat.
Kai Dong WANG ; Bing Yang ZHANG ; Bao Fu ZHANG ; Min HUANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(3):161-169
Objective: To observe the intestinal time-dependent changes in Parkinson's disease (PD) mouse model constructed by intraperitoneal injection of paraquat (PQ) and to establish the brain-gut axis connection initially. Methods: In October 2019, 48 mice were randomly divided into treated group and control groups: treated 4-week (P-4) group, treated 6-week (P-6) group, treated 8-week (P-8) group, control 4-week (C-4) group, control 6-week (C-6) group, and control 8-week (C-8) group. The treated group was injected with 15 mg/kg PQ solution and the control group was injected with 0.9% saline (0.2 ml/20 g) by intraperitoneal injection twice a week. After the initial state (0 weeks) and the treatment at the end of 4, 6 and 8 weeks, the mood changes and motor functions of mice were assessed by neurobehavioral tests (open field test, pole climbing test, tail suspension test and elevated plus maze test) . And the number of fecal pellets for 1 h and water content were calculated to assess the functional status of the gastrointestinal tract. Western blotting experiments were performed to detect the expression levels of α-synuclein (α-syn) and tyrosine hydroxylase (TH) in the nigrostriatal region of the mouse brain, the tight junction markers zonula occludens-1 (ZO-1) and Occludin, the inflammatory markers of integrin αM subunit (CD11b) , inducible nitric oxide synthase (iNOS) , high mobility group box 1 (HMGB1) , interleukin-1β (IL-1β) , and the neuronal markers βⅢ-tubulin and α-syn protein in the colon.Immunohistochemical staining was performed to detect the expression levels of colonic tight junction proteins ZO-1 and Occludin. Immunofluorescence staining was performed to detect the expression levels of TH in the substantia nigra region of the midbrain, and the co-localization of colonic intestine neuronal marker (βⅢ-tubulin) and Ser129 α-syn in the colonic. Results: Compared with the initial state (0 weeks) and C-8 group, mice in the P-8 group had significantly higher pole climbing test scores and resting time, and significantly lower total active distance, mean active speed, percentage of open arm entry and 1 h fecal instances (P<0.05) . After poisoning, the 1 h fecal water content of model mice first increased and then decreased, the P-4 and P-6 groups were significantly higher than the simultaneous point control group, and the P-8 groups were significantly lower than the initial state (P<0.05) . Compared with control, P-4 and P-6 groups, the expression levels of ZO-1 and Occludin in the P-8 group were significantly decreased (P<0.05) . Compared with control group, the expression levels of CD11b and IL-1β in the P-4 group were significantly increased (P<0.05) . Compared with control and P-4 group, the expression levels of CD11b, iNOS, HMGB1 and IL-1β in the P-6 and P-8 groups were significantly increased (P<0.05) . Compared with the control and P-4 groups, the expression levels of βⅢ-tubulin in the colon of mice in the P-8 group were significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased (P<0.05) . The expression level of Ser129 α-syn in the colon of model mice was negatively correlated with the expression level of βⅢ-tubulin (r(s)=-0.9149, 95%CI: -0.9771--0.7085, P<0.001) . Ser129 α-syn and βⅢ-tubulin co-localization in the colonic intermuscular plexus region increased gradually with the time of exposure. Compared with the control, P-4 and P-6 groups, the expression level of TH in the nigrostriatal region of the brain was significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased in the P-8 group (P<0.05) . Correlation analysis showed that the relative expression level of Ser129 α-syn in the nigrostriatal region of the brain was negatively correlated with the expression level of TH in the model mice (r(s)=-0.9716, 95% CI: -0.9925--0.8953, P<0.001) . Conclusion: The PD mouse model is successfully established by PQ, and the intestinal function of the model mice is reduced in a time-dependent manner. And on this basis, it is preliminary determined that the abnormal aggregation of α-syn may be an important substance connecting the brain-gut axis.
Animals
;
Brain-Gut Axis
;
Disease Models, Animal
;
HMGB1 Protein
;
Intestines
;
Mice
;
Mice, Inbred C57BL
;
Occludin
;
Paraquat/toxicity*
;
Parkinson Disease
;
Tubulin
;
Tyrosine 3-Monooxygenase/metabolism*
;
Water
9.Diethylhexyl phthalate induces anxiety-like behavior and learning and memory impairment in mice probably by damaging blood-brain barrier.
Fan LI ; Yan Yan ZHU ; Xiao Ming SUN ; Hui Juan HU ; Miao Miao ZHOU ; Yi Xue BAI ; Hao HU
Journal of Southern Medical University 2022;42(8):1237-1243
OBJECTIVE:
To investigate the effects of diethylhexyl phthalate (DEHP) exposure on anxiety-like behaviors and learning and memory ability in mice and explore the underlying mechanism.
METHODS:
Forty male ICR mice were randomized equally into control group (0 mg/kg) and 10, 50 and 100 mg/kg DEHP exposure groups, in which the mice were exposed to DEHP at the indicated doses by gavage for 4 weeks. After the treatments, the mice were assessed for behavioral changes using open filed test, elevated plus-maze and Morris water maze test. Brain tissues were collected from the mice for determination of malondialdehyde (MDA) content, pathologies and expressions of ZO-1 and occludin in the hippocampus.
RESULTS:
Compared with the control group, the mice with DEHP exposure for 4 weeks exhibited no significant body weight change (P>0.05) but presented with obvious behavioral changes, manifested by reduced movement distance (P < 0.05) and time spent in the center of the open field (P < 0.05), reduced movement distance (P < 0.05) and time spent in the open arm of the elevated maze (P < 0.05), significantly increased latency of searching for the platform (P < 0.05), and decreased frequency of crossing the platform (P < 0.05). HE staining showed obvious vertebral cell death in the hippocampal CA1 to CA3 regions of the mice with DEHP exposure. The exposed mice showed significantly increased MDA content and decreased expressions of ZO-1 and occludin at both the mRNA and protein levels in the hippocampus (P < 0.05 or 0.01). Multivariate linear regression analysis suggested a close correlation between anxiety-like behaviors and learning and memory abilities in DEHP-exposed mice.
CONCLUSION
DEHP exposure may cause damages of the blood-brain barrier and the pyramidal cells in the hippocampus of mice, thereby inducing anxiety-like behaviors and learning and memory impairment.
Animals
;
Anxiety/chemically induced*
;
Blood-Brain Barrier/metabolism*
;
Diethylhexyl Phthalate/toxicity*
;
Male
;
Maze Learning
;
Mice
;
Mice, Inbred ICR
;
Occludin/pharmacology*
10.Activation of cannabinoid receptor 2 alleviates acute lung injury in rats with lipopolysaccharide-induced sepsis.
Hui Wen KANG ; Shou Fang JIANG ; Qian SONG ; Yi Li ZHANG
Journal of Southern Medical University 2022;42(9):1374-1380
OBJECTIVE:
To investigate the protective effect of cannabinoid receptor 2 (CB2) activation against acute lung injury in rats with lipopolysaccharide (LPS)-induced sepsis and explore the underlying mechanism.
METHODS:
Forty-eight SD rats were randomly assigned into control group, model group, CB2 agonist group and P38 MAPK inhibitor group (n=12). In the latter 3 groups, the rats received intraperitoneal injection of LPS to induce sepsis, and the control rats were given saline injection. In CB2 agonist group, JWH133 (3 mg/kg) was injected intraperitoneally 30 min before LPS injection; in P38 MAPK inhibitor group, the rats received intraperitoneal injection of SB203580 (5 mg/kg) 30 min prior to JWH133 injection. The changes in lung histopathology, water content, fluid clearance rate, inflammatory factors, pulmonary expressions of CB2 and tight junctionrelated genes, and phosphorylation of P38 MAPK in the lung tissues were examined.
RESULTS:
The rat models of sepsis showed severe damage of alveolar structures with significantly decreased fluid clearance rate, lowered pulmonary expressions of CB2, occludin and ZO-1 mRNA and proteins, increased water content in the lung tissue, and increased phosphorylation level of P38 MAPK and TNF-α and IL-1β levels in lung lavage fluid (all P < 0.05). Treatment with JWH133 improved alveolar pathology in the septic rats, but there was still inflammatory infiltration; lung tissue water content, phosphorylation of P38 MAPK, and TNF-α and IL-1β levels in lung lavage fluid were all significantly decreased, and the fluid clearance rate, pulmonary expressions of CB2, occludin and ZO-1 were significantly increased (all P < 0.05). Additional treatment with SB203580 resulted in further improvements of alveolar pathologies, lowered phosphorylation levels of P38 MAPK in the lung tissue and TNF-α and IL-1β levels in lung lavage fluid, and increased the protein expressions of occludin and ZO-1 (P < 0.05) without causing significant changes in mRNA and protein expression of CB2 (P > 0.05).
CONCLUSION
In rats with LPS-induced sepsis, activation of CB2 can inhibit the p38 MAPK signaling pathway, reduce the release of inflammatory factors in the lung tissues, promote tight junction protein expressions, and thus offer protection against acute lung injury.
Acute Lung Injury/metabolism*
;
Animals
;
Cannabinoids
;
Lipopolysaccharides/adverse effects*
;
Lung/pathology*
;
Occludin/metabolism*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Cannabinoid, CB2
;
Receptors, Cannabinoid/metabolism*
;
Sepsis/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Water/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*

Result Analysis
Print
Save
E-mail