1.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*
2.Modified Shuyu Pills regulate VTA-NAc circuit myelination to ameliorate depressive behaviors in mouse model of vascular dementia via LDLR/MEK/ERK signaling pathway.
Song JING ; Zi-Hu TAN ; Qiong YANG
China Journal of Chinese Materia Medica 2025;50(16):4555-4563
This study aims to explore the effects and potential mechanisms of Modified Shuyu Pills in ameliorating depressive behaviors in the mouse model of vascular dementia(VaD). Seventy-two three-month-old male C57BL/6 mice were assigned into six groups: sham, model, low-, medium-, and high-dose Modified Shuyu Pills, and fluoxetine. The other five groups except the sham group underwent bilateral common carotid artery stenosis combined with chronic unpredictable stress. Depressive behaviors were assessed by the sucrose preference test and tail suspension test. Cerebral blood flow was measured by laser speckle imaging. Protein levels of low density lipoprotein receptor(LDLR), mitogen-activated protein kinase kinase(MEK), phosphorylated(p)-MEK, extracellular signal-regulated kinase(ERK), and p-ERK in the ventral tegmental area(VTA) and nucleus accumbens(NAc) were determined by Western blot. The fluorescence intensity of myelin basic protein(MBP) in the VTA and NAc were measured by immunofluorescence. Myelin sheath morphology in the VTA and NAc was observed by luxol fast blue staining, and the ultrastructure of myelin sheath in the VTA and NAc was examined by transmission electron microscopy. In the tail suspension test, the immobility time of the model group was longer than that of the sham group(P<0.01). In the sucrose preference test, the sucrose preference rate of the model group was lower than that of the sham group(P<0.01). After intervention with Modified Shuyu Pills, the immobility time in the tail suspension test was shortened(P<0.01), and the sucrose preference rate increased(P<0.01). Laser speckle imaging results showed that compared with the sham group, the model group showed reduced cerebral blood flow(P<0.01), and the reduction was reversed by medium-and high-dose Modified Shuyu Pills(P<0.01). Western blot results indicated that the relative expression levels of LDLR, p-MEK/MEK, and p-ERK/ERK in the VTA and NAc of the model group were lower than those in the sham group(P<0.01). Medium-and high-dose Modified Shuyu Pills reversed this trend(P<0.01). Immunofluorescence results showed that the fluorescence intensity of MBP in the VTA and NAc of the model group was lower than that of the sham group(P<0.01). The medium-and high-dose Modified Shuyu Pills groups showed increased fluorescence intensity of MBP in the VTA compared with the model group(P<0.01). In the NAc, the fluorescence intensity of MBP in all the groups of Modified Shuyu Pills increased to varying degrees compared with that in the model group(P<0.01). Luxol fast blue staining results showed that the model group presented lighter staining intensity and looser arrangement of myelin fibers than the sham group, indicating significant demyelination in the model group. However, after intervention with medium-and high-dose Modified Shuyu Pills, the staining intensity and myelin sheath structure in the VTA and NAc were improved. Transmission electron microscopy results revealed that the myelin sheath in the VTA and NAc of the sham group was intact and dense, while the model group exhibited extensive myelin loss, with myelin sheath degeneration and disintegration. After intervention with Modified Shuyu Pills, the myelin sheath loss in the VTA and NAc of mice was reduced, and the proportion of myelinated tissue increased. In summary, Modified Shuyu Pills may promote myelination via the VTA-NAc circuit by upregulating the LDLR/MEK/ERK signaling pathway, thereby ameliorating depressive-like behaviors in VaD mice.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Ventral Tegmental Area/metabolism*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Depression/genetics*
;
Receptors, LDL/genetics*
;
Dementia, Vascular/psychology*
;
MAP Kinase Signaling System/drug effects*
;
Nucleus Accumbens/metabolism*
;
Behavior, Animal/drug effects*
;
Humans
;
Myelin Sheath/drug effects*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
3.Modulation of Nicotine-Associated Behaviour in Rats By μ-Opioid Signals from the Medial Prefrontal Cortex to the Nucleus Accumbens Shell.
Feng ZHU ; Hirosato KANDA ; Hiroyuki NEYAMA ; Yuping WU ; Shigeki KATO ; Di HU ; Shaoqi DUAN ; Koichi NOGUCHI ; Yasuyoshi WATANABE ; Kazuto KOBAYASHI ; Yi DAI ; Yilong CUI
Neuroscience Bulletin 2024;40(12):1826-1842
Nicotine addiction is a concern worldwide. Most mechanistic investigations are on nicotine substance dependence properties based on its pharmacological effects. However, no effective therapeutic treatment has been established. Nicotine addiction is reinforced by environments or habits. We demonstrate the neurobiological basis of the behavioural aspect of nicotine addiction. We utilized the conditioned place preference to establish nicotine-associated behavioural preferences (NABP) in rats. Brain-wide neuroimaging analysis revealed that the medial prefrontal cortex (mPFC) was activated and contributed to NABP. Chemogenetic manipulation of µ-opioid receptor positive (MOR+) neurons in the mPFC or the excitatory outflow to the nucleus accumbens shell (NAcShell) modulated the NABP. Electrophysiological recording confirmed that the MOR+ neurons directly regulate the mPFC-NAcShell circuit via GABAA receptors. Thus, the MOR+ neurons in the mPFC modulate the formation of behavioural aspects of nicotine addiction via direct excitatory innervation to the NAcShell, which may provide new insight for the development of effective therapeutic strategies.
Animals
;
Nucleus Accumbens/drug effects*
;
Prefrontal Cortex/drug effects*
;
Nicotine/pharmacology*
;
Receptors, Opioid, mu/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Tobacco Use Disorder/metabolism*
;
Neurons/drug effects*
;
Neural Pathways/drug effects*
4.Intra-nucleus accumbens shell injection of baclofen blocks the reconsolidation of conditioned place preference in morphine-addicted mice.
Ruo-Chen WANG ; Li-Fei XIAO ; Chun ZHANG ; Tao SUN ; Kui-Sheng SUN
Acta Physiologica Sinica 2020;72(2):255-261
Preclinical studies suggest that the GABA receptor is a potential target for treatment of substance use disorders. Baclofen (BLF), a prototypical GABA receptor agonist, is the only specific GABA receptor agonist available for application in clinical addiction treatment. The nucleus accumbens shell (AcbSh) is a key node in the circuit that controls reward-directed behavior. However, the relationship between GABA receptors in the AcbSh and memory reconsolidation was unclear. The aim of this study was to investigate the effect of intra-AcbSh injection of BLF on the reconsolidation of morphine reward memory. Male C57BL/6J mice were used to establish morphine conditioned place preference (CPP) model and carry out morphine reward memory retrieval and activation experiment. The effects of intra-AcbSh injection of BLF on morphine-induced CPP, reinstatement of CPP and locomotor activity were observed after environmental cues activating morphine reward memory. The results showed that intra-AcbSh injection of BLF (0.06 nmol/0.2 μL/side or 0.12 nmol/0.2 μL/side), rather than vehicle or BLF (0.01 nmol/0.2 μL/side), following morphine reward memory retrieval abolished morphine-induced CPP by disrupting its reconsolidation in mice. Moreover, this effect persisted for more than 14 days, which was not reversed by a morphine priming injection. Furthermore, intra-AcbSh injection of BLF without morphine reward memory retrieval had no effect on morphine-associated reward memory. Interestingly, administration of BLF into the AcbSh had no effect on the locomotor activity of mice during testing phase. Based on these results, we concluded that intra-AcbSh injection of BLF following morphine reward memory could erase morphine-induced CPP by disrupting its reconsolidation. Activating GABA receptor in AcbSh during drug memory reconsolidation may be a potential approach to prevent drug relapse.
Animals
;
Baclofen
;
administration & dosage
;
Conditioning, Classical
;
GABA-B Receptor Agonists
;
administration & dosage
;
Locomotion
;
Male
;
Memory
;
Mice
;
Mice, Inbred C57BL
;
Morphine
;
Nucleus Accumbens
;
drug effects
;
Opioid-Related Disorders
;
Reward
5.Wireless telemetry electrical activity of nucleus accumbens shell in morphine-induced CPP rats.
Ran YU ; Zheng YE ; Jing LI ; Min LI ; Yu BAI ; Qun-wan PAN
Chinese Journal of Applied Physiology 2015;31(1):49-53
OBJECTIVETo analyse the relationship between the electrical activity changes of nucleus accumbens (NAc) shell and the drug-seeking behavior by recording NAc shell electrical activity in conditioned place preference (CPP) rats induced by morphine.
METHODSForty SD rats were randomly divided into operation-only control group and the morphine-induced CPP group after stereotaxic electrode was buried on rats NAc shell and the latter group was used to establish the morphine CPP model(n = 20). A CPP video system combining with the technique of electrical activity wireless telemetry was used in the study. The NAc electrical activity from each group of rats was recorded by wireless telemetry respectively, which included staying in black or white chamber of video box, shuttling between black-white chambers and between white-black chambers. The electrical activity differences were analyzed by the percentage of each wave.
RESULTSWhen the morphine-induced rats staying in black chamber, compared with the operation-only control group, the NAc shell electrical activity showed that the percentage of 0 - 10 Hz was increased(P < 0.05), meanwhile, those of 10 - 20 Hz and 30 - 40 Hz were reduced(P < 0.05, P < 0.01); when the morphine-induced rats staying in white chamber, the NAc shell electrical activity showed that the percentage of 0 - 10 Hz and 30 - 40 Hz were increased(P < 0.05 , P < 0.01) , that of 10 - 20 Hz was reduced(P < 0.05 , P < 0. 01); when the morphine-induced rats in black- white shuttling status, the NAc shell electrical activity showed that the percentage of 0 - 10 Hz was increased(P <0.05, P <0.01), that of 10- 30 Hz was reduced( P <0.05); and in the white-black shuttling status, the electrical activity showed that the percentage of 0 - 10 Hz was reduced(P <0.05), that of 10 - 30 Hz was increased(P < 0.05) ; the electrical activity was further compared between staying status and shuttling status in the morphine-induced CPP group. There was no significant difference of electrical activity between the rats in white-black shuttling status and staying in white chamber. However, when rats in black-white shuttling status, compared with staying in black chamber, the electrical activity showed that the percentage of 0 - 10 Hz and 40 - 50 Hz were increased(P < 0.05), meanwhile, those of 10 - 20 Hz and 30 - 40 Hz were reduced(P <0.05).
CONCLUSIONThe electrical activity changes of NAc shell in morphine-induced CPP rats were different from those of the operation-only control group, and these changes might be associated to the rat's drug-seeking behavior.
Animals ; Conditioning (Psychology) ; Drug-Seeking Behavior ; Morphine ; pharmacology ; Nucleus Accumbens ; drug effects ; physiology ; Rats ; Rats, Sprague-Dawley ; Telemetry
6.Repeated morphine pretreatment reduces glutamatergic synaptic potentiation in the nucleus accumbens induced by acute morphine exposure.
Xiao-Jie WU ; Jing ZHANG ; Chun-Ling WEI ; Zhi-Qiang LIU ; Wei REN
Acta Physiologica Sinica 2012;64(2):170-176
Repeated exposure to morphine leads to the addiction, which influences its clinical application seriously. The glutamatergic projection from prefrontal cortex (PFC) to the nucleus accumbens (NAc) plays an important role in rewarding effects. It is still unknown whether morphine exposure changes PFC-NAc synaptic transmission. To address this question, in vivo field excitatory postsynaptic potentials (fEPSPs) induced by electric stimulating PFC-NAc projection fibers were recorded to evaluate the effect of acute morphine exposure (10 mg/kg, s.c.) on glutamatergic synaptic transmission in NAc shell of repeated saline/morphine pretreated rats. It was showed that acute morphine exposure enhanced fEPSP amplitude and reduced paired-pulse ratio (PPR) in saline pretreated rats, which could be reversed by following naloxone injection (1 mg/kg, i.p.), an opiate receptor antagonist. However, repeated morphine pretreatment significantly inhibited both the enhancement of fEPSP amplitude and reduction of PPR induced by acute morphine exposure. Those results indicate that the initial morphine exposure enhances PFC-NAc synaptic transmission by pre-synaptic mechanisms, whereas morphine pretreatment occludes this effect.
Animals
;
Excitatory Postsynaptic Potentials
;
drug effects
;
physiology
;
Female
;
Glutamate Plasma Membrane Transport Proteins
;
metabolism
;
Glutamates
;
metabolism
;
Morphine
;
administration & dosage
;
Morphine Dependence
;
physiopathology
;
Nucleus Accumbens
;
physiopathology
;
Prefrontal Cortex
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
7.Effect of prenatal heroin exposure on p-ERK1/2 expression in the prefrontal lobe cortex, hippocampus and nucleus accumbens in mice.
Ying WANG ; Peng-Bo ZHANG ; Kan LI
Chinese Journal of Contemporary Pediatrics 2009;11(4):306-309
OBJECTIVETo study the expression of phosphorylated-ERK1/2(p-ERK1/2)MAPK in the prefrontal lobe cortex (PFC), hippocampus (HP) and nucleus accumbens (Acb) in mice exposed to heroin in the uterus, and elucidate whether ERK MAPK signal transduction pathway participates in neurobehavioral teratogenicity induced by maternal heroin abuse.
METHODSAnimal model was established by subcutaneous administration of diacetylmorphine (10 mg/kg.d) to pregnant BALB/c mice on embryonic days 9-18, and their offspring were assigned to heroin and normal saline groups according to the maternal treatment. P-ERK1/2 expression in the PFC, HP and Acb were detected by RT-PCR and Western blot.
RESULTSThe heroin group had body weights similar to the normal saline group after birth. There were no significant differences in the p-ERK1/2 expression in the PFC, HP and Acb between the two groups.
CONCLUSIONSPrenatal exposure to 10 mg/kg heroin altered neither the body weight nor the general development in mice. The ERK1/2 MAPK signal pathway might not be involved in the neurobehavioral teratogenicity induced by prenatal heroin exposure.
Animals ; Body Weight ; drug effects ; Extracellular Signal-Regulated MAP Kinases ; genetics ; Female ; Fetus ; drug effects ; Heroin ; toxicity ; Hippocampus ; drug effects ; enzymology ; MAP Kinase Signaling System ; drug effects ; Male ; Mice ; Mice, Inbred BALB C ; Nucleus Accumbens ; drug effects ; enzymology ; Prefrontal Cortex ; drug effects ; enzymology
8.Modulation of gamma-aminobutyric acid on painful sense in central nervous system of morphine-dependent rats.
Yan XU ; Man-Ying XU ; Xia LI
Neuroscience Bulletin 2008;24(5):278-282
OBJECTIVETo observe the effects of gamma-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats.
METHODSAfter GABA or the GABA(A)-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc.
RESULTSWhen GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN.
CONCLUSIONExogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABA(A) receptor participate and mediate the traumatic information transmission process in CNS.
Action Potentials ; drug effects ; physiology ; Animals ; Bicuculline ; pharmacology ; Disease Models, Animal ; Drug Administration Schedule ; Electric Stimulation ; adverse effects ; Female ; GABA Antagonists ; pharmacology ; Injections, Intraventricular ; methods ; Male ; Morphine ; administration & dosage ; Morphine Dependence ; etiology ; pathology ; physiopathology ; Narcotics ; administration & dosage ; Nucleus Accumbens ; metabolism ; physiopathology ; Pain ; etiology ; physiopathology ; Pain Threshold ; drug effects ; physiology ; Rats ; Rats, Wistar ; Reaction Time ; drug effects ; physiology ; Time Factors ; gamma-Aminobutyric Acid ; metabolism ; pharmacology
9.Microinjection of M(5) muscarinic receptor antisense oligonucleotide into VTA inhibits FosB expression in the NAc and the hippocampus of heroin sensitized rats.
Hui-Fen LIU ; Wen-Hua ZHOU ; Hua-Qiang ZHU ; Miao-Jun LAI ; Wei-Sheng CHEN
Neuroscience Bulletin 2007;23(1):1-8
OBJECTIVETo investigate the effect of M(5) muscarinic receptor subtype on the locomotor sensitization induced by heroin priming, and it's effect on the FosB expression in the nucleus accumbens (NAc) and the hippocampus in the heroin sensitized rats.
METHODSLocomotor activity was measured every 10 min for 1 h after subcutaneous injection of heroin. FosB expression was assayed by immunohistochemistry, and the antisense oligonucleotides (AS-ONs) targeting M(5) muscarinic receptor was transferred with the lipofectin.
RESULTSMicroinjection of AS-ONs targeting M(5) muscarinic receptor in the ventral tegmental area (VTA) blocked the expression of behavioral sensitization induced by heroin priming in rats. Meanwhile, the expression of FosB-positive neurons in either the NAc or the dentate gyrus (DG) of the hippocampus increased in heroin-induced locomotor sensitized rats. The enhancement of FosB-positive neurons in the NAc or DG could be inhibited by microinjection of M(5) muscarinic receptor AS-ONs into the VTA before the heroin-induced locomotor sensitization was performed. In contrast, microinjection of M(5) muscarinic receptor sense oligonucleotide (S-ONs) into the VTA did not block the expression of behavioral sensitization or the expression of FosB in the NAc or DG in the heroin sensitized rats.
CONCLUSIONBlocking M(5) muscarinic receptor in the VTA inhibits the expression of heroin-induced locomotor sensitization, which is associated with the regulation of FosB expression in the NAc and hippocampus neurons. M(5) muscarinic receptor may be a useful pharmacological target for the treatment of heroin addiction.
Acetylcholine ; metabolism ; Animals ; Brain ; drug effects ; metabolism ; physiopathology ; Heroin ; adverse effects ; Heroin Dependence ; drug therapy ; metabolism ; physiopathology ; Hippocampus ; drug effects ; metabolism ; Immunohistochemistry ; Male ; Microinjections ; Motor Activity ; drug effects ; physiology ; Narcotics ; adverse effects ; Neural Pathways ; drug effects ; metabolism ; physiopathology ; Neurons ; drug effects ; metabolism ; Nucleus Accumbens ; drug effects ; metabolism ; physiopathology ; Oligonucleotides, Antisense ; pharmacology ; Proto-Oncogene Proteins c-fos ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor, Muscarinic M5 ; antagonists & inhibitors ; genetics ; metabolism ; Synaptic Transmission ; drug effects ; physiology ; Ventral Tegmental Area ; drug effects ; metabolism ; physiopathology
10.Changes of CREB in rat hippocampus, prefrontal cortex and nucleus accumbens during three phases of morphine induced conditioned place preference in rats.
Lian-fang ZHOU ; Yong-ping ZHU
Journal of Zhejiang University. Science. B 2006;7(2):107-113
OBJECTIVETo investigate the changes in CREB (cAMP response element binding protein) in hippocampus, PFC (prefrontal cortex) and NAc (nucleus accumbens) during three phases of morphine induced CPP (conditioned place preference) in rats, and to elucidate the role of CREB during the progress of conditioned place preference.
METHODSMorphine induced CPP acquisition, extinction and drug primed reinstatement model was established, and CREB expression in each brain area was measured by Western Blot methods.
RESULTSEight alternating injections of morphine (10 mg/kg) induced CPP, and 8 d saline extinction training that extinguished CPP. CPP was reinstated following a priming injection of morphine (2.5 mg/kg). During the phases of CPP acquisition and reinstatement, the level of CREB expression was significantly changed in different brain areas.
CONCLUSIONIt was proved that CPP model can be used as an effective tool to investigate the mechanisms underlying drug-induced reinstatement of drug seeking after extinction, and that morphine induced CPP and drug primed reinstatement may involve activation of the transcription factor CREB in several brain areas, suggesting that the CREB and its target gene regulation pathway may mediate the basic mechanism underlying opioid dependence and its drug seeking behavior.
Analgesics, Opioid ; pharmacology ; Animals ; Blotting, Western ; Conditioning (Psychology) ; Conditioning, Operant ; drug effects ; Cyclic AMP Response Element-Binding Protein ; biosynthesis ; Hippocampus ; metabolism ; Male ; Morphine ; pharmacology ; Nucleus Accumbens ; metabolism ; Prefrontal Cortex ; metabolism ; Rats ; Rats, Sprague-Dawley ; Time Factors

Result Analysis
Print
Save
E-mail