1.Genome sequence analysis of two SARS-CoV-2 virus infections in Inner Mongolia, 2022.
Guo Qing YANG ; Chao MIN ; Jian SONG ; Xiao Feng JIANG ; Hua YUE ; Xiao Wei NAN ; Zhen YAN ; Ai Tao LU ; Yan HAI ; Zhan Song ZHU
Chinese Journal of Preventive Medicine 2023;57(10):1630-1634
The target gene sequences of the novel coronaviruses obtained by sequencing were compared with the reference sequences to analyze the genetic variation of the two cases of the novel coronaviruses from Inner Mongolia Autonomous Region in 2022 and to explore the sources of infection. The results showed that the two sequences belonged to different evolutionary branches, Delta (AY.122) and Omicron (BA.1.1), respectively. hCoV-19/Inner Mongolia/IVDC-591/2022 had 48 single nucleotide polymorphisms on the genome sequences, sharing 40 nucleotide mutation sites with a Mongolian strain; hCoV-19/Inner Mongolia/IVDC-592/2022 genome shared 57 nucleotide mutation sites with a UK strain, and the nucleotide mutation site identity was 100% (57/57). Phylogenetic analysis showed that the target gene sequences were not directly related to domestic novel coronavirus sequences during the same period, but were related to isolates from Europe and Mongolia.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Phylogeny
;
Genome, Viral
;
Nucleotides
;
Sequence Analysis
2.Genome sequence analysis of two SARS-CoV-2 virus infections in Inner Mongolia, 2022.
Guo Qing YANG ; Chao MIN ; Jian SONG ; Xiao Feng JIANG ; Hua YUE ; Xiao Wei NAN ; Zhen YAN ; Ai Tao LU ; Yan HAI ; Zhan Song ZHU
Chinese Journal of Preventive Medicine 2023;57(10):1630-1634
The target gene sequences of the novel coronaviruses obtained by sequencing were compared with the reference sequences to analyze the genetic variation of the two cases of the novel coronaviruses from Inner Mongolia Autonomous Region in 2022 and to explore the sources of infection. The results showed that the two sequences belonged to different evolutionary branches, Delta (AY.122) and Omicron (BA.1.1), respectively. hCoV-19/Inner Mongolia/IVDC-591/2022 had 48 single nucleotide polymorphisms on the genome sequences, sharing 40 nucleotide mutation sites with a Mongolian strain; hCoV-19/Inner Mongolia/IVDC-592/2022 genome shared 57 nucleotide mutation sites with a UK strain, and the nucleotide mutation site identity was 100% (57/57). Phylogenetic analysis showed that the target gene sequences were not directly related to domestic novel coronavirus sequences during the same period, but were related to isolates from Europe and Mongolia.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Phylogeny
;
Genome, Viral
;
Nucleotides
;
Sequence Analysis
3.Genetic analysis and reproductive intervention of 7 families with gonadal mosaicism for Duchenne muscular dystrophy.
Bodi GAO ; Xiaowen YANG ; Xiao HU ; Wenbing HE ; Xiaomeng ZHAO ; Fei GONG ; Juan DU ; Qianjun ZHANG ; Guangxiu LU ; Ge LIN ; Wen LI
Chinese Journal of Medical Genetics 2023;40(4):423-428
OBJECTIVE:
To explore the genetic basis for 7 families with gonadal mosaicism for Duchenne muscular dystrophy (DMD).
METHODS:
For the 7 families presented at the CITIC Xiangya Reproductive and Genetic Hospital from September 2014 to March 2022, clinical data were collected. Preimplantation genetic testing for monogenic disorders (PGT-M) was carried out for the mother of the proband from family 6. Peripheral venous blood samples of the probands, their mothers and other patients from the families, amniotic fluid samples from families 1 ~ 4 and biopsied cells of embryos cultured in vitro from family 6 were collected for the extraction of genomic DNA. Multiplex ligation-dependent probe amplification (MLPA) was carried out for the DMD gene, and short tandem repeat (STR)/single nucleotide polymorphism (SNP)-based haplotypes were constructed for the probands, other patients, fetuses and embryos.
RESULTS:
The results of MLPA showed that the probands and the fetuses/probands' brothers in families 1 ~ 4, 5, 7 had carried the same DMD gene variants, whilst the probands' mothers were all normal. The proband in family 6 carried the same DMD gene variant with only 1 embryo (9 in total) cultured in vitro, and the DMD gene of the proband's mother and the fetus obtained through the PGT-M were normal. STR-based haplotype analysis showed that the probands and the fetuses/probands' brothers in families 1 ~ 3 and 5 have inherited the same maternal X chromosome. SNP-based haplotype analysis showed that the proband from family 6 has inherited the same maternal X chromosome with only 1 embryo (9 in total) cultured in vitro. The fetuses in families 1 and 6 (via PGT-M) were both confirmed to be healthy by follow up, whilst the mothers from families 2 and 3 had chosen induced labor.
CONCLUSION
Haplotype analysis based on STR/SNP is an effective method for judging gonad mosaicism. Gonad mosaicisms should be suspected for women who have given births to children with DMD gene variants but with a normal peripheral blood genotype. Prenatal diagnosis and reproductive intervention may be adapted to reduce the births of further affected children in such families.
Male
;
Pregnancy
;
Child
;
Humans
;
Female
;
Muscular Dystrophy, Duchenne/diagnosis*
;
Dystrophin/genetics*
;
Mosaicism
;
Exons
;
Prenatal Diagnosis/methods*
;
Nucleotides
4.Genetic characterization of varicella-zoster virus in people aged 20 years and under in Yichang City of Hubei Province, 2019-2020.
Mei Ying YOU ; Miao Miao WANG ; Hong GUO ; Tian Qi WANG ; Xu Dong LI ; Song Tao XU ; Yue Hua HU ; Da Ping YIN
Chinese Journal of Epidemiology 2023;44(4):607-610
Objective: To analyze the genetic characteristics of varicella-zoster virus (VZV) in people aged 20 years and under in Yichang City of Hubei Province from 2019 to 2020. Methods: Based on the Yichang Health Big Data Platform, we investigated cases 20 and under clinically diagnosed as herpes zoster in three hospitals from March 2019 to September 2020. Collecting vesicle fluid and throat swab samples of the cases and completing questionnaires to obtain basic information. Real-time fluorescent quantitative PCR was used for positive identification of the virus. PCR amplification of VZV's open reading frame (ORF) and sequencing of the products to determine the VZV genotype. Analyze mutations at some specific single nucleotide polymorphism (SNP) sites. Results: Among 46 cases of herpes zoster, the male to female ratio was 1.3∶1 (26∶20) and the age ranged from 7 to 20 years old. Fifteen cases had been vaccinated against varicella, including 13 and 2 cases of 1 and 2 doses, respectively. VZV strains were detected in 34 samples (73.91%), all belonging to Clade 2. Phylogenetic tree analysis of the nucleotide of ORF22 showed, compared with Clade 2 referenced strains, the sequence matching degree of nucleotide for all 34 samples was 99.0% to 100.0%. Conclusion: The main VZV strain causing herpes zoster in people aged 20 years and under in Yichang from 2019 to 2020 was Clade 2.
Humans
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Herpesvirus 3, Human/genetics*
;
Phylogeny
;
Herpes Zoster/epidemiology*
;
Polymorphism, Single Nucleotide
;
Real-Time Polymerase Chain Reaction
;
Nucleotides
5.Phenotype-genotype analysis of the autosomal recessive hereditary hearing loss caused by OTOA variations.
Jin Yuan YANG ; Qiu Quan WANG ; Ming Yu HAN ; Sha Sha HUANG ; Dong Yang KANG ; Xin ZHANG ; Su Yan YANG ; Pu DAI ; Yong Yi YUAN
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(5):460-469
Objective: To analyze the phenotypic-genotypic characteristics of hereditary deafness caused by OTOA gene variations. Methods: Family histories, clinical phenotypes and gene variations of six pedigrees were analyzed, which were diagnosed with hearing loss caused by OTOA gene variations at the PLA General Hospital from September 2015 to January 2022. The sequence variations were verified by Sanger sequencing and the copy number variations were validated by multiplex ligation-dependent probe amplification (MLPA) in the family members. Results: The hearing loss phenotype caused by OTOA variations ranged from mild to moderate in the low frequencies, and from moderate to severe in the high frequencies in the probands, which came from six sporadic pedigrees, among which a proband was diagnosed as congenital deafness and five were diagnosed as postlingual deafness. One proband carried homozygous variations and five probands carried compound heterozygous variations in OTOA gene. Nine pathogenic variations (six copy number variations, two deletion variations and one missense variation) and two variations with uncertain significance in OTOA were identified in total, including six copy number variations and five single nucleotide variants, and three of the five single nucleotide variants were firstly reported [c.1265G>T(p.Gly422Val),c.1534delG(p.Ala513Leufs*11) and c.3292C>T(p.Gln1098fs*)]. Conclusions: OTOA gene variations can lead to autosomal recessive nonsyndromic hearing loss. In this study, the hearing loss caused by OTOA defects mostly presents as bilateral, symmetrical, and postlingual, and that of a few presents as congenital. The pathogenic variations of OTOA gene are mainly copy number variations followed by deletion variations and missense variations.
Humans
;
DNA Copy Number Variations
;
Hearing Loss, Sensorineural/genetics*
;
Deafness/genetics*
;
Hearing Loss/genetics*
;
Phenotype
;
Genotype
;
Nucleotides
;
Pedigree
;
Mutation
;
GPI-Linked Proteins/genetics*
6.Development of an APRT-deficient CHO cell line and its ability of expressing recombinant protein.
Yingying FENG ; Mengke XIAO ; Jiangtao LU ; Xiaoyin WANG ; Yurong CHAI ; Tianyun WANG ; Yanlong JIA
Chinese Journal of Biotechnology 2022;38(9):3453-3465
Chinese hamster ovary (CHO) cells are the preferred host cells for the production of complex recombinant therapeutic proteins. Adenine phosphoribosyltransferase (APRT) is a key enzyme in the purine biosynthesis step that catalyzes the condensation of adenine with phosphoribosylate to form adenosine phosphate AMP. In this study, the gene editing technique was used to knock out the aprt gene in CHO cells. Subsequently, the biological properties of APRT-KO CHO cell lines were investigated. A control vector expressed an enhanced green fluorescent protein (EGFP) and an attenuation vector (containing an aprt-attenuated expression cassette and EGFP) were constructed and transfected into APRT-deficient and wild-type CHO cells, respectively. The stable transfected cell pools were subcultured for 60 generations and the mean fluorescence intensity of EGFP in the recombinant CHO cells was detected by flow cytometry to analyze the EGFP expression stability. PCR amplification and sequencing showed that the aprt gene in CHO cell was successfully knocked out. The obtained APRT-deficient CHO cell line had no significant difference from the wild-type CHO cells in terms of cell morphology, growth, proliferation, and doubling time. The transient expression results indicated that compared with the wild-type CHO cells, the expression of EGFP in the APRT-deficient CHO cells transfected with the control vector and the attenuation vector increased by 42%±6% and 56%±9%, respectively. Especially, the EGFP expression levels in APRT-deficient cells transfected with the attenuation vector were significantly higher than those in wild-type CHO cells (P < 0.05). The findings suggest that the APRT-deficient CHO cell line can significantly improve the long-term expression stability of recombinant proteins. This may provide an effective cell engineering strategy for establishing an efficient and stable CHO cell expression system.
Adenine/metabolism*
;
Adenine Nucleotides
;
Adenine Phosphoribosyltransferase/genetics*
;
Adenosine Monophosphate
;
Animals
;
CHO Cells
;
Cricetinae
;
Cricetulus
;
Recombinant Proteins/genetics*
7.Molecular analysis of 23 cases of B subgroup.
Jinhui XIE ; Shuangyu LI ; Mengli XUE ; Lina WU ; Ying ZHAO ; Xian HUANG ; Jinghui CHONG ; Wei WANG ; Zheng DONG ; Bo SUN ; Tongtong LI ; Shiping AN ; Lixin LI
Chinese Journal of Medical Genetics 2022;39(5):546-547
OBJECTIVE:
To explore the molecular reasons of weak expression of B antigen on the red cell.
METHODS:
Serological test for blood group was carried out, including red cell and plasma grouping, and anti-A1 and anti-H testing, and confirming weak A or B antigens by adsorption and elution. Exons 1-7 were sequenced directly, and one of them was cloned and sequenced.
RESULTS:
All of the 23 samples showed the weak B antigen by serological method. The alleles of the subgroups were identified by DNA sequencing, including 2 Bel subgroup, 4 B3 subgroup, 14 Bw subgroup, 2 CisAB subgroup and a novel allele. The novel allele showed a nucleotide substitution 662G>A in the exon 7, and the sequence was submitted to Blood Group Antigen Gene Mutation Database, and the novel allele was named Bel10.
CONCLUSION
Nucleotide substitution in exon results in blood subgroup, which showed that the antigens were weakened, and Bw phenotype was the most frequently subgroup.
ABO Blood-Group System/genetics*
;
Alleles
;
Exons
;
Genotype
;
Humans
;
Nucleotides
;
Phenotype
8.Genetic characteristics of varicella zoster virus in Shandong province from 2020 to 2021.
Meng CHEN ; Su Ting WANG ; Yao LIU ; Ping XIONG ; Ze Xin TAO ; Li ZHANG ; Jin Li JIA ; Chang Yin WANG ; Songtao XU
Chinese Journal of Preventive Medicine 2022;56(8):1080-1086
Objective: To investigate the genetic characteristics of varicella zoster virus (VZV) in Shandong province from 2020 to 2021. Methods: From April 2020 to December 2021, 85 herpes fluid samples from suspected varicella patients in Shandong province were collected. The qPCR was used to detect viral DNA and screen suspected samples. Six single nucleotide polymorphisms (SNPs) of ORF22 fragment and ORF38 fragment in positive samples were examined via PCR and Sanger sequencing to identify the viral genotypes. Four SNPs of ORF38 and ORF62 were examined to identify the vaccine and wild-type strains. The sequences were analyzed with Sequencher and MEGA7 software, using the VZV reference strain sequences from GenBank. Results: In the 85 samples suspected of varicella, 80 were VZV positive and wild-type strains belonging to Clade 2. Compared with clade 2 representative strains, the nucleotide and amino acid similarities of ORF22 fragment were 99.5%-100% and 98.5%-100%, respectively. SD20-1, SD20-5, SD20-6, SD20-8, SD20-9, SD20-10, SD20-11, SD20-12, SD20-13, SD20-30 and SD20-31 had a A➝G nucleotide mutation at 37990, causing amino acid change from glutamine to arginine. SD21-1 had a C➝A nucleotide mutation at 38059, causing threonine to asparagine during coding. Conclusions: From 2020 to 2021, all VZV strains in Shandong province are the wild-type strains belonging to Clade 2.
Amino Acids/genetics*
;
Chickenpox
;
Chickenpox Vaccine/genetics*
;
Herpes Zoster
;
Herpesvirus 3, Human/genetics*
;
Humans
;
Nucleotides
;
Polymorphism, Single Nucleotide
;
Real-Time Polymerase Chain Reaction
9.Genetic characteristics of hantavirus detected in rodents in Shenzhen.
Yao LUO ; Yue LI ; Ya Lan HUANG ; Xiao Min ZHANG ; Ling Hong XIONG ; Ren Li ZHANG ; Fan YANG
Chinese Journal of Epidemiology 2022;43(11):1804-1810
Objective: To study the molecular epidemiological characteristics and genotypes of hantavirus carried by rodents in Shenzhen. Methods: Rodents were captured, and their lung samples were collected and grinded for RNA extraction. The hantavirus positive samples were classified by real-time fluorescence PCR. Rat lung nucleic acid samples were selected to amplify the nucleotide sequences of partial M fragments (G2 segment) and S fragments by reverse transcription-nested polymerase chain reaction (RT-nested PCR). The PCR products were then sequenced and homology and phylogenetic tree analyses were conducted. Results: A total of 200 rodents were captured, including 189 Rattus norvegicus, 9 Rattus flavipectus and 2 Mus musculus. The positive rate of hantavirus was 21.0% (42/200), all of the isolates were seoul virus (SEOV) strains. The positive rate of hantavirus in Bao'an district was highest (45.7%), and the difference in detection rate among districts were significant (χ2=25.60,P<0.05). A total of 25 G2 segment sequences and S fragment sequences of SEOV were obtained by virus gene sequencing, and their nucleotide homology was 95.3%-100.0% and 97.6%-100.0%, respectively. Compared with other reference sequences of S2 subtype, the nucleotide homology between the sample sequence and the reference sequence from Guangzhou was high. Analysis on nucleotide homology and phylogenetic tree showed that hantavirus carried by the rodents captured in Shenzhen belonged to SEOV S2 subtype. Analysis on amino acid variation sites revealed that there was a variation in the nucleocapsid protein encoded by S gene from Alanine to Threonine at the 973 position of BA-111. Conclusion: Hantavirus carried by rodents in Shenzhen belongs to S2 subtype of Seoul virus, which have little variation compared with the hantavirus strains obtained in other years in Shenzhen and surrounding provinces.
Mice
;
Rats
;
Animals
;
Orthohantavirus/genetics*
;
Rodentia
;
Phylogeny
;
Hantavirus Infections/veterinary*
;
Communicable Diseases
;
Nucleotides
;
Real-Time Polymerase Chain Reaction
10.GNB2L1 gene expression and clinical value in hepatocellular carcinoma based on bioinformatics.
Ling Yan FAN ; Chun Li SUN ; Yu Han CHEN ; Guo Sheng GAO
Chinese Journal of Hepatology 2022;30(9):954-961
Objective: To analyze guanine nucleotide-binding protein subunit beta-2-like 1 (GNB2L1) expression based on bioinformatics, so as to evaluate its role and its relationship with survival rate during the occurrence and development of hepatocellular carcinoma. Methods: GEPIA, UALCAN and HPA databases were used to analyze the expression level of GNB2L1 and its relationship with HCC survival rate. Mutations in the GNB2L1 gene and their impact on survival were analyzed using the cBioPortal database. LinkedOmics database was used to analyze GNB2L1-related genes in HCC. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed simultaneously. STEING database was used to construct the GNB2L1 protein interaction network. TIMER database was used to analyze the relationship between GNB2L1 gene expression and immune infiltration in hepatocellular carcinoma. Differential expression of GNB2L1 in plasma platelets of HCC patients and healthy controls was analyzed using mRNA-based sequencing technology. Data between groups were compared using an independent-samples t-test. Results: GNB2L1 expression level was significantly increased in HCC tissues (P<0.05), and its expression was significantly correlated with body weight, classification and stage (P<0.05). The overall survival rate was higher in GNB2L1 low expression group (P<0.001). GNB2L1 and its related genes were related to biological process regulation, metabolic process, protein binding, oxidative phosphorylation, JAK-STAT signaling pathway, Ras signaling pathway and so on. GNB2L1 had interaction with RPS12, RPS11 and RPL19, and participated in multiple biological processes such as liver regeneration and positive regulation of endogenous apoptotic signaling pathway. GNB2L1 expression was significantly positively correlated with the infiltration degree of various immune cells in HCC (P<0.05). Cox regression analysis showed that GNB2L1 was an independent risk factor for lower survival rate in patients with HCC [Hazard ratio (95% confidence interval)=1.456 (1.034~2.051), P=0.031]. GNB2L1expression levels were significantly higher in platelets of HCC patients than that of healthy controls (10.40±1.36 vs. 9.58±0.51, t=2.194, P=0.037). Conclusion: GNB2L1 has high expression and close relationship to survival rate in HCC. Therefore, GNB2L1 may be a potential biomarker of HCC.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Computational Biology
;
Liver Neoplasms/pathology*
;
Protein Subunits/metabolism*
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger
;
Guanine Nucleotides
;
Gene Expression
;
Biomarkers, Tumor/genetics*

Result Analysis
Print
Save
E-mail