1.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
2.NIP7 upregulates the expression of ubiquitin-conjugating enzyme E2 C to promote tumor growth in anaplastic thyroid cancer.
Yingying GONG ; Ziwen FANG ; Yixuan WANG ; Minghua GE ; Zongfu PAN
Journal of Zhejiang University. Medical sciences 2025;54(3):372-381
OBJECTIVES:
To investigate the role of nucleolar pre-rRNA processing protein NIP7 (NIP7) in maintaining the malignant phenotype of anaplastic thyroid cancer (ATC) and its molecular mechanisms.
METHODS:
NIP7 expression in ATC tissues and its gene knock-out effects in ATC cells were analyzed using gene expression microarray (GSE33630), proteome database (IPX0008941000) and the Dependency Map database, respectively. Expression and localization of NIP7 in normal thyroid cells, papillary thyroid cancer cells, and ATC cells were detected by Western blotting. Small interfering RNA (siRNA) was transfected into ATC cells, and the knockdown efficiency of NIP7 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell proliferation was assessed by CCK-8 assay, colony formation was evaluated by colony formation assay, and tumor growth was assessed by xenograft tumor model in nude mice. SUnSET (surface sensing of translation) assay combined with co-immunoprecipitation were employed to evaluate the effect of NIP7 silencing on ubiquitin-conjugating enzyme E2 C (UBE2C) translation. Finally, gene set enrichment analysis was used to identify shared pathways of NIP7 and UBE2C, which were validated by qRT-PCR.
RESULTS:
Compared with normal tissues and papillary thyroid cancer, NIP7 was significantly upregulated in ATC tissues, and had a gene knock-out fitness effect on different ATC cell lines. The relative protein levels of NIP7 in ATC cells were significantly higher than those in normal thyroid follicular cells, and the protein was mainly expressed in the nucleus. NIP7 silencing significantly inhibited cell proliferation and reduced colony formation. Xenograft tumor model showed that NIP7 knockdown significantly slowed down the growth of ATC xenograft, and the tumor volume and weight were significantly lower than those in the control group (all P<0.05). NIP7 silencing downregulated the protein level of UBE2C, but did not affect the expression of UBE2C mRNA. Compared to the control group, UBE2C silencing significantly inhibited ATC cells proliferation (P<0.01) and colony formation (P<0.05). UBE2C overexpression reversed the proliferation-inhibitory effect induced by NIP7 silencing (P<0.01). Gene set enrichment analysis indicated that NIP7 and UBE2C were both involved in DNA replication. NIP7 or UBE2C silencing could significantly downregulate the expression levels of DNA polymerase epsilon, catalytic subunit 2 and replication factor C4 in DNA replication pathway.
CONCLUSIONS
NIP7 promotes ATC tumor growth by upregulating UBE2C to mediate DNA replication.
Humans
;
Ubiquitin-Conjugating Enzymes/genetics*
;
Thyroid Neoplasms/genetics*
;
Thyroid Carcinoma, Anaplastic/genetics*
;
Animals
;
Mice, Nude
;
Mice
;
Cell Line, Tumor
;
Cell Proliferation
;
Up-Regulation
;
RNA, Small Interfering/genetics*
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
3.Expression and Biological Function of SPOP in Acute Myeloid Leukemia.
Xue-Ying WAN ; Jing XU ; Xiao-Li LIU ; Hong-Wei WANG
Journal of Experimental Hematology 2025;33(1):32-38
OBJECTIVE:
To study the expression of SPOP in patients with acute myeloid leukemia (AML) and its effect on proliferation, apoptosis and cycle of AML cells.
METHODS:
RT-qPCR was used to detect the expression of SPOP mRNA in bone marrow samples of patients with newly diagnosed AML and normal controls. The stable overexpression of SPOP in AML cell lines THP-1 and U937 were constructed by liposome transfection. The effect of SPOP on cell proliferation was detected by CCK-8, and the effect of SPOP on apoptosis and cell cycle was detected by flow cytometry. The expressions of anti-apoptotic protein Bcl-2 and apoptotic protein Bax, Caspase3 were detected by Western blot.
RESULTS:
The median expression level of SPOP mRNA in normal control group was 0.993 1(0.6303, 1.433), while that in AML group was 0.522 1(0.242 2, 0.723 7). The expression level of SPOP in AML group was significantly lower than that in normal control group ( P < 0.001). After the overexpression of SPOP, the proportion of apoptotic cells in the U937 overexpression group and THP-1 overexpression group was 10.9%±0.3% and 4.6%±015%, which were higher than 8.9%±0.3% and 3.0%±0.30% in the Empty Vector group, respectively (both P < 0.05). The expression of Caspase3 in U937 overexpression group and THP-1 overexpression group was 1.154±0.086 and 1.2±0.077, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). The ratio of Bax/Bcl-2 in U937 overexpression group and THP-1 overexpression group was 1.328±0.057 and 1.669±0.15, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). In the cell proliferation experiment, the number of cells in the U937 overexpression group and THP-1 overexpression group were both slightly lower than those in the Empty Vector group, but the differences were not statistically significant (P >0.05). In the cell cycle experiment, the proportion of G1 cells in the U937 overexpression group and THP-1 overexpression group were both slightly higher than those in the Empty Vector group, but the differences were not statistically significant (P >0.05).
CONCLUSION
SPOP can promote the apoptosis of leukemic cells, and its mechanism may be related to down-regulation of Bcl-2 expression and up-regulation of Bax and Caspase3 expression.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Apoptosis
;
Repressor Proteins/genetics*
;
Cell Proliferation
;
Nuclear Proteins/genetics*
;
Cell Cycle
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
U937 Cells
;
Cell Line, Tumor
;
RNA, Messenger/genetics*
4.Effect of TBL1XR1 Mutation on Cell Biological Characteristics of Diffuse Large B-Cell Lymphoma.
Hong-Ming FAN ; Le-Min HONG ; Chun-Qun HUANG ; Jin-Feng LU ; Hong-Hui XU ; Jie CHEN ; Hong-Ming HUANG ; Xin-Feng WANG ; Dan GUO
Journal of Experimental Hematology 2025;33(2):423-430
OBJECTIVE:
To investigate the effect of TBL1XR1 mutation on cell biological characteristics of diffuse large B-cell lymphoma (DLBCL).
METHODS:
The TBL1XR1 overexpression vector was constructed and DNA sequencing was performed to determine the mutation status. The effect of TBL1XR1 mutation on apoptosis of DLBCL cell line was detected by flow cytometry and TUNEL fluorescence assay; CCK-8 assay was used to detect the effect of TBL1XR1 mutation on cell proliferation; Transwell assay was used to detect the effect of TBL1XR1 mutation on cell migration and invasion; Western blot was used to detect the effect of TBL1XR1 mutation on the expression level of epithelial-mesenchymal transition (EMT) related proteins.
RESULTS:
The TBL1XR1 overexpression plasmid was successfully constructed. The in vitro experimental results showed that TBL1XR1 mutation had no significant effect on apoptosis of DLBCL cells. Compared with the control group, TBL1XR1 mutation enhanced cell proliferation, migration and invasion of DLBCL cells. TBL1XR1 gene mutation significantly increased the expression of N-cadherin protein, while the expression of E-cadherin protein decreased.
CONCLUSION
TBL1XR1 mutation plays a role in promoting tumor cell proliferation, migration and invasion in DLBCL. TBL1XR1 could be considered as a potential target for DLBCL therapy in future research.
Humans
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Proliferation
;
Mutation
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Apoptosis
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Cell Movement
;
Repressor Proteins/genetics*
;
Nuclear Proteins/genetics*
;
Cadherins/metabolism*
5.Suanzaoren Decoction Alleviates Anxiety- and Depression-Like Behaviors Induced by Chronic Restraint Stress via Regulating Pyramidal Neuron Activity in Basolateral Amygdala of Mice.
Chang-Feng CHEN ; Yin-Huan GAO ; Qin FANG ; Yong-Feng ZHOU ; Yong LIU ; Jian WU ; Hao CHEN ; Lie-Cheng WANG ; Lei CHEN
Chinese journal of integrative medicine 2025;31(11):982-990
OBJECTIVE:
To elucidate the modulation mechanism of Suanzaoren Decoction (SZRD) on basolateral amygdala (BLA) neuronal activity to alleviate chronic restraint stress (CRS)-related behavioral deficits.
METHODS:
The male C57BL/6J mice were assigned to 4 groups using the complete randomization method, including control (CON, n=19), CRS (n=19), SZRD (n=21), and fluoxetine (Flu, n=22) groups. Mice were restrained for 6 h per day, over a 21-d period to establish CRS models. The CON group remained in their cages without food or water during the 6-h matching period. SZRD and Flu groups received intragastric administration of SZRD (4.68 g/kg) and Flu (20 mg/kg) daily, respectively, 30 min before restraint for 21 consecutive days. The therapeutic effects of SZRD were evaluated using behavioral tests including the tail suspension test, elevated plus maze test, and forced swimming test. The cellular Fletcher B. Judson murine osteosarcoma proto-oncogene (c-Fos) expression in the BLA was measured using immunofluorescence, while action potential (AP) firing and synaptic transmission in BLA pyramidal neurons were evaluated using whole-cell patch-clamp recordings.
RESULTS:
SZRD administration significantly increased time spent in the open arms and open-arm entries while reducing immobility time (P<0.05 or P<0.01). It downregulated CRS-induced c-Fos expression and AP firing of pyramidal neurons in the BLA (P<0.01). Additionally, SZRD selectively attenuated excitatory (P<0.01), but not inhibitory, synaptic transmission onto BLA pyramidal neurons.
CONCLUSION
SZRD alleviated CRS-induced anxiety- and depression-like behaviors in mice by modulating the excitability and synaptic transmission of BLA pyramidal neurons.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Depression/complications*
;
Pyramidal Cells/pathology*
;
Male
;
Mice, Inbred C57BL
;
Basolateral Nuclear Complex/pathology*
;
Restraint, Physical
;
Anxiety/complications*
;
Behavior, Animal/drug effects*
;
Stress, Psychological/physiopathology*
;
Mice
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Action Potentials/drug effects*
;
Synaptic Transmission/drug effects*
6.Application and mechanisms of targeting BRD4 in osteosarcoma.
Ding CHEN ; Jiaming TIAN ; Yihe DONG ; Zi LI ; Jun HUANG
Journal of Central South University(Medical Sciences) 2025;50(3):416-429
OBJECTIVES:
Metastasis is the primary cause of death in osteosarcoma, and current clinical treatments remain limited. BRD4, a key epigenetic regulator, has shown therapeutic promise in various cancers through its inhibition. However, the mechanistic role of BRD4 in osteosarcoma remains poorly understood. This study aims to elucidate the molecular mechanisms by which BRD4 regulate osteosarcoma progression and to explore novel therapeutic strategies.
METHODS:
Immunofluorescence was used to assess BRD4 expression levels in a tissue microarray containing 80 osteosarcoma samples from different patients. The Gene Expression Omnibus (GEO) dataset (GSE42352, containing survival data from 88 osteosarcoma patients) was downloaded to perform Kaplan-Meier survival analysis based on BRD4 gene expression levels. In vivo, an orthotopic intramedullary osteosarcoma model was established using HOS cells in C57 mice, followed by treatment with varying doses of the BRD4 inhibitor (+)-JQ1. Micro-CT, 3D reconstruction of bone tissue, and HE staining were employed to evaluate pathological changes in bone and intestinal lymph nodes. In vitro, cell viability was measured using the methyl thiazolyl tetrazolium (MTT) assay, while colony formation and Transwell assays assessed proliferative and invasive capacities. Chromatin-bound BRD4 was analyzed via co-immunoprecipitation combined with mass spectrometry (Co-IP/MS), and O-GlcNAc glycosylation sites and glycan chains of BRD4 were identified using Co-IP with Nano-LC MS/MS. Real-time PCR and Western blotting were used to analyze the relative mRNA and protein expression levels of target genes, respectively.
RESULTS:
BRD4 was positively expressed in 61.25% (49/80) of osteosarcoma tissues. Patients with high BRD4 expression exhibited significantly shorter survival times (P<0.05). In the orthotopic mouse model, intervention with (+)-JQ1, a potent and commonly used BETi, significantly inhibited tumor growth in vivo and reduced bone destruction (P<0.05). (+)-JQ1 treatment significantly suppressed the proliferation (P<0.001), invasion (P<0.001), and migration (P<0.05) of HOS cells. In osteosarcoma cells, BRD4 exhibited O-GlcNAc modifications at both N- and C- C-termini, particularly at Thr73, which is essential for protein stability. This modification also contributed to the activation of the EGFR tyrosine kinase inhibitor resistance pathway (KEGG Pathway: hsa01521). (+)-JQ1 treatment displaced BRD4 from enhancers and downregulated the transcription of pathway-related genes, such as EGFR and PDGFC, thereby suppressing the malignant behavior of osteosarcoma cells.
CONCLUSIONS
BRD4 promotes osteosarcoma progression via O-GlcNAc modification at Thr73 and plays a crucial role in tumor growth and metastasis.
Osteosarcoma/drug therapy*
;
Humans
;
Transcription Factors/metabolism*
;
Animals
;
Cell Cycle Proteins
;
Mice
;
Bone Neoplasms/drug therapy*
;
Azepines/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Triazoles/pharmacology*
;
Mice, Inbred C57BL
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
;
Male
;
Bromodomain Containing Proteins
7.The splicing factor HNRNPH1 regulates Circ-MYOCD back-splicing to modulate the course of cardiac hypertrophy.
Rui CAI ; Zhuo HUANG ; Wenxia HE ; Tianhong AI ; Xiaowei SONG ; Shuting HU
Journal of Southern Medical University 2025;45(3):587-594
OBJECTIVES:
To explore the mechanism of Circ-MYOCD back-splicing and its regulatory role in myocardial hypertrophy.
METHODS:
Sanger sequencing and RNase R assays were performed to verify the circularity and stability of Circ-MYOCD, whose subcellular distribution was determined by nuclear-cytoplasmic fractionation. Bioinformatics analysis and mass spectrometry from pull-down assays were conducted to predict the RNA-binding proteins (RBPs) interacting with Circ-MYOCD. In rat cardiomyocytes H9C2 cells, the effects of HNRNPH1 and HNRNPL knockdown and overexpression on Circ-MYOCD back-splicing were evaluated. In a H9C2 cell model of angiotensin II (Ang II)-induced myocardial hypertrophy, the expression of HNRNPH1 was detected, the effects of HNRNPH1 knockdown and overexpression on progression of myocardial hypertrophy were assessed, and the regulatory effect of HNRNPH1 on Circ-MYOCD back-splicing was analyzed.
RESULTS:
Sanger sequencing confirmed that the junction primers could amplify the correct Circ-MYOCD sequence. RNase R and nuclear-cytoplasmic fractionation assays showed that Circ-MYOCD was stable and predominantly localized in the cytoplasm. Bioinformatics analysis and mass spectrometry from the Circ-MYOCD pull-down assay identified HNRNPH1 and HNRNPL as the RBPs interacting with Circ-MYOCD. In H9C2 cells, HNRNPH1 knockdown significantly enhanced while its overexpression inhibited Circ-MYOCD back-splicing; HNRNPH1 overexpression obviously increased the expressions of myocardial hypertrophy markers ANP and BNP, while its knockdown produced the opposite effect. In Ang II-induced H9C2 cells, which exhibited a significant increase of HNRNPH1 expression and increased expressions of ANP and BNP, HNRNPH1 knockdown obviously increased Circ-MYOCD expression, decreased MYOCD expression and lowered both ANP and BNP expressions.
CONCLUSIONS
HNRNPH1 regulates Circ-MYOCD back-splicing to influence the progression of myocardial hypertrophy.
Animals
;
Rats
;
RNA, Circular/genetics*
;
Cardiomegaly/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism*
;
Cell Line
;
RNA Splicing
;
Angiotensin II
;
RNA-Binding Proteins
8.Danzhi Jiangtang Capsule improves renal vascular endothelial function in rats with diabetic nephropathy by downregulating the Notch1/NICD/MAML1 signaling pathway.
Sijia ZHU ; Jingcheng MA ; Yujiao ZHENG ; Chuanyun WU ; Jiangen ZHAO ; Lingxiu LI ; Li WANG ; Xuemei ZHOU
Journal of Southern Medical University 2025;45(10):2250-2257
OBJECTIVES:
To investigate the therapeutic mechanism of Danzhi Jiangtang Capsule (DZJTC) for repairing renal vascular endothelial injury in rats with diabetic nephropathy (DN).
METHODS:
Fifty male SD rat models of DN, established by left nephrectomy, high-sugar and high-fat diet and streptozotocin injection, were randomized into DN model group, low-, medium-, and high-dose DZJTC treatment groups, and DAPT (a γ-secretase inhibitor) treatment group, with 10 rats with normal feeding as the control group. DZJTC was administered by daily gavage at 0.315, 0.63, or 1.26 g/kg, and DAPT (20 mg/kg, dissolved in 50% CMC-Na solution) was given by gavage every other day for 4 weeks; normal saline was given in the control and model groups. After treatment, the levels of creatinine (CRE), blood urea nitrogen (BUN), and microalbuminuria (mALB) were detected with ELISA, and renal pathologies were observed by transmission electron microscopy. Renal expressions of vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were measured by immunohistochemistry, and the protein expressions of CD31 and Notch signaling pathway components were detected using Western blotting.
RESULTS:
The rat models of DN showed significantly increased CRE, BUN, and mALB levels, obvious renal pathologies under electron microscopy, increased renal VEGF, ET-1 and CD31 expressions, and upregulated Notch1, NICD, and MAML1 protein levels. Treatment with DZJTC at the 3 doses and DAPT significantly reduced CRE, BUN, and mALB levels, improved renal pathology, decreased VEGF, ET-1 and CD31 expressions, and lowered Notch1, NICD and MAML1 levels, and the effects were the most pronounced with high-dose DZJTC.
CONCLUSIONS
DZJTC ameliorates hyperproliferation and dysfunction of renal vascular endothelium in DN rats possibly by regulating renal VEGF and ET-1 levels via inhibiting NICD- and MAML1-mediated Notch signaling pathway.
Animals
;
Male
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Diabetic Nephropathies/drug therapy*
;
Receptor, Notch1/metabolism*
;
Kidney/blood supply*
;
Diabetes Mellitus, Experimental
;
Down-Regulation
;
Endothelium, Vascular/metabolism*
;
Nuclear Proteins/metabolism*
9.Inhibition of BRD4 promotes migration of esophageal squamous cell carcinoma cells with low ACC1 expression.
Wenxin JIA ; Shuhua HUO ; Jiaping TANG ; Yuzhen LIU ; Baosheng ZHAO
Journal of Southern Medical University 2025;45(10):2258-2269
OBJECTIVES:
To investigate the effect of BRD4 inhibition on migration of esophageal squamous cell carcinoma (ESCC) cells with low acetyl-CoA carboxylase 1 (ACC1) expression.
METHODS:
ESCC cell lines with lentivirus-mediated ACC1 knockdown or transfected with a negative control sequence (shNC) were treated with DMSO, JQ1 (a BRD4 inhibitor), co-transfection with shNC-siBRD4 or siNC with additional DMSO or C646 (an ahistone acetyltransferase inhibitor) treatment, or JQ1combined with 3-MA (an autophagy inhibitor). BRD4 mRNA expression in the cells was detected using RT-qPCR. The changes in cell proliferation, migration, autophagy, and epithelial-mesenchymal transition (EMT) were examined with CCK8 assay, Transwell migration assay, and Western blotting.
RESULTS:
ACC1 knockdown did not significantly affect BRD4 expression in the cells but obviously increased their sensitivity to JQ1. JQ1 treatment at 1 and 2 μmol/L significantly inhibited ESCC cell proliferation, while JQ1 at 0.2 and 2 μmol/L promoted cell migration. The cells with ACC1 knockdown and JQ1 treatment showed increased expresisons of vimentin and Slug and decreased expression of E-cadherin. BRD4 knockdown promoted migration of ESCC cells, and co-transfection with shACC1 and siBRD4 resulted in increased vimentin and Slug expressions and decreased E-cadherin expression in the cells. C646 treatment of the co-transfected cells reduced acetylation levels, decreased vimentin and Slug expressions, and increased E-cadherin expression. Treatment with JQ1 alone obviously increased LC3A/B-II levels in the cells either with or without ACC1 knockdown. In the cells with ACC1 knockdown and JQ1 treatment, additional 3-MA treatment significantly decreased the expressions of vimentin, Slug and LC3A/B-II and increased the expression of E-cadherin.
CONCLUSIONS
BRD4 inhibition promotes autophagy of ESCC cells via a histone acetylation-dependent mechanism, thereby enhancing EMT and ultimately increasing cell migration driven by ACC1 deficiency.
Humans
;
Cell Movement
;
Transcription Factors/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Line, Tumor
;
Cell Cycle Proteins
;
Azepines/pharmacology*
;
Epithelial-Mesenchymal Transition
;
Carcinoma, Squamous Cell/metabolism*
;
Esophageal Squamous Cell Carcinoma
;
Triazoles/pharmacology*
;
Nuclear Proteins/genetics*
;
Cell Proliferation
;
Acetyl-CoA Carboxylase/genetics*
;
Transfection
;
Autophagy
;
Bromodomain Containing Proteins
10.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins

Result Analysis
Print
Save
E-mail