1.Suanzaoren Decoction Alleviates Anxiety- and Depression-Like Behaviors Induced by Chronic Restraint Stress via Regulating Pyramidal Neuron Activity in Basolateral Amygdala of Mice.
Chang-Feng CHEN ; Yin-Huan GAO ; Qin FANG ; Yong-Feng ZHOU ; Yong LIU ; Jian WU ; Hao CHEN ; Lie-Cheng WANG ; Lei CHEN
Chinese journal of integrative medicine 2025;31(11):982-990
OBJECTIVE:
To elucidate the modulation mechanism of Suanzaoren Decoction (SZRD) on basolateral amygdala (BLA) neuronal activity to alleviate chronic restraint stress (CRS)-related behavioral deficits.
METHODS:
The male C57BL/6J mice were assigned to 4 groups using the complete randomization method, including control (CON, n=19), CRS (n=19), SZRD (n=21), and fluoxetine (Flu, n=22) groups. Mice were restrained for 6 h per day, over a 21-d period to establish CRS models. The CON group remained in their cages without food or water during the 6-h matching period. SZRD and Flu groups received intragastric administration of SZRD (4.68 g/kg) and Flu (20 mg/kg) daily, respectively, 30 min before restraint for 21 consecutive days. The therapeutic effects of SZRD were evaluated using behavioral tests including the tail suspension test, elevated plus maze test, and forced swimming test. The cellular Fletcher B. Judson murine osteosarcoma proto-oncogene (c-Fos) expression in the BLA was measured using immunofluorescence, while action potential (AP) firing and synaptic transmission in BLA pyramidal neurons were evaluated using whole-cell patch-clamp recordings.
RESULTS:
SZRD administration significantly increased time spent in the open arms and open-arm entries while reducing immobility time (P<0.05 or P<0.01). It downregulated CRS-induced c-Fos expression and AP firing of pyramidal neurons in the BLA (P<0.01). Additionally, SZRD selectively attenuated excitatory (P<0.01), but not inhibitory, synaptic transmission onto BLA pyramidal neurons.
CONCLUSION
SZRD alleviated CRS-induced anxiety- and depression-like behaviors in mice by modulating the excitability and synaptic transmission of BLA pyramidal neurons.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Depression/complications*
;
Pyramidal Cells/pathology*
;
Male
;
Mice, Inbred C57BL
;
Basolateral Nuclear Complex/pathology*
;
Restraint, Physical
;
Anxiety/complications*
;
Behavior, Animal/drug effects*
;
Stress, Psychological/physiopathology*
;
Mice
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Action Potentials/drug effects*
;
Synaptic Transmission/drug effects*
2.Application and mechanisms of targeting BRD4 in osteosarcoma.
Ding CHEN ; Jiaming TIAN ; Yihe DONG ; Zi LI ; Jun HUANG
Journal of Central South University(Medical Sciences) 2025;50(3):416-429
OBJECTIVES:
Metastasis is the primary cause of death in osteosarcoma, and current clinical treatments remain limited. BRD4, a key epigenetic regulator, has shown therapeutic promise in various cancers through its inhibition. However, the mechanistic role of BRD4 in osteosarcoma remains poorly understood. This study aims to elucidate the molecular mechanisms by which BRD4 regulate osteosarcoma progression and to explore novel therapeutic strategies.
METHODS:
Immunofluorescence was used to assess BRD4 expression levels in a tissue microarray containing 80 osteosarcoma samples from different patients. The Gene Expression Omnibus (GEO) dataset (GSE42352, containing survival data from 88 osteosarcoma patients) was downloaded to perform Kaplan-Meier survival analysis based on BRD4 gene expression levels. In vivo, an orthotopic intramedullary osteosarcoma model was established using HOS cells in C57 mice, followed by treatment with varying doses of the BRD4 inhibitor (+)-JQ1. Micro-CT, 3D reconstruction of bone tissue, and HE staining were employed to evaluate pathological changes in bone and intestinal lymph nodes. In vitro, cell viability was measured using the methyl thiazolyl tetrazolium (MTT) assay, while colony formation and Transwell assays assessed proliferative and invasive capacities. Chromatin-bound BRD4 was analyzed via co-immunoprecipitation combined with mass spectrometry (Co-IP/MS), and O-GlcNAc glycosylation sites and glycan chains of BRD4 were identified using Co-IP with Nano-LC MS/MS. Real-time PCR and Western blotting were used to analyze the relative mRNA and protein expression levels of target genes, respectively.
RESULTS:
BRD4 was positively expressed in 61.25% (49/80) of osteosarcoma tissues. Patients with high BRD4 expression exhibited significantly shorter survival times (P<0.05). In the orthotopic mouse model, intervention with (+)-JQ1, a potent and commonly used BETi, significantly inhibited tumor growth in vivo and reduced bone destruction (P<0.05). (+)-JQ1 treatment significantly suppressed the proliferation (P<0.001), invasion (P<0.001), and migration (P<0.05) of HOS cells. In osteosarcoma cells, BRD4 exhibited O-GlcNAc modifications at both N- and C- C-termini, particularly at Thr73, which is essential for protein stability. This modification also contributed to the activation of the EGFR tyrosine kinase inhibitor resistance pathway (KEGG Pathway: hsa01521). (+)-JQ1 treatment displaced BRD4 from enhancers and downregulated the transcription of pathway-related genes, such as EGFR and PDGFC, thereby suppressing the malignant behavior of osteosarcoma cells.
CONCLUSIONS
BRD4 promotes osteosarcoma progression via O-GlcNAc modification at Thr73 and plays a crucial role in tumor growth and metastasis.
Osteosarcoma/drug therapy*
;
Humans
;
Transcription Factors/metabolism*
;
Animals
;
Cell Cycle Proteins
;
Mice
;
Bone Neoplasms/drug therapy*
;
Azepines/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Triazoles/pharmacology*
;
Mice, Inbred C57BL
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
;
Male
;
Bromodomain Containing Proteins
3.Danzhi Jiangtang Capsule improves renal vascular endothelial function in rats with diabetic nephropathy by downregulating the Notch1/NICD/MAML1 signaling pathway.
Sijia ZHU ; Jingcheng MA ; Yujiao ZHENG ; Chuanyun WU ; Jiangen ZHAO ; Lingxiu LI ; Li WANG ; Xuemei ZHOU
Journal of Southern Medical University 2025;45(10):2250-2257
OBJECTIVES:
To investigate the therapeutic mechanism of Danzhi Jiangtang Capsule (DZJTC) for repairing renal vascular endothelial injury in rats with diabetic nephropathy (DN).
METHODS:
Fifty male SD rat models of DN, established by left nephrectomy, high-sugar and high-fat diet and streptozotocin injection, were randomized into DN model group, low-, medium-, and high-dose DZJTC treatment groups, and DAPT (a γ-secretase inhibitor) treatment group, with 10 rats with normal feeding as the control group. DZJTC was administered by daily gavage at 0.315, 0.63, or 1.26 g/kg, and DAPT (20 mg/kg, dissolved in 50% CMC-Na solution) was given by gavage every other day for 4 weeks; normal saline was given in the control and model groups. After treatment, the levels of creatinine (CRE), blood urea nitrogen (BUN), and microalbuminuria (mALB) were detected with ELISA, and renal pathologies were observed by transmission electron microscopy. Renal expressions of vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were measured by immunohistochemistry, and the protein expressions of CD31 and Notch signaling pathway components were detected using Western blotting.
RESULTS:
The rat models of DN showed significantly increased CRE, BUN, and mALB levels, obvious renal pathologies under electron microscopy, increased renal VEGF, ET-1 and CD31 expressions, and upregulated Notch1, NICD, and MAML1 protein levels. Treatment with DZJTC at the 3 doses and DAPT significantly reduced CRE, BUN, and mALB levels, improved renal pathology, decreased VEGF, ET-1 and CD31 expressions, and lowered Notch1, NICD and MAML1 levels, and the effects were the most pronounced with high-dose DZJTC.
CONCLUSIONS
DZJTC ameliorates hyperproliferation and dysfunction of renal vascular endothelium in DN rats possibly by regulating renal VEGF and ET-1 levels via inhibiting NICD- and MAML1-mediated Notch signaling pathway.
Animals
;
Male
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Diabetic Nephropathies/drug therapy*
;
Receptor, Notch1/metabolism*
;
Kidney/blood supply*
;
Diabetes Mellitus, Experimental
;
Down-Regulation
;
Endothelium, Vascular/metabolism*
;
Nuclear Proteins/metabolism*
4.Interleukin-17 promotes mouse hepatoma cell proliferation by antagonizing interferon-γ.
Jie LI ; Kun YAN ; Yi YANG ; Hua LI ; Zhidong WANG ; Xin XU
Journal of Southern Medical University 2019;39(1):1-5
OBJECTIVE:
To investigate the interaction between interleukin-17 (IL-17) and interferon-γ (IFN-γ) and how their interaction affects the growth of mouse hepatoma Hepa1-6 cells.
METHODS:
Hepa1-6 cells treated with IL-17 and IFN-γ either alone or in combination were examined for changes in cell proliferation using MTT assay and in cell cycle distribution using flow cytometry. Western blotting was used to detect the protein expression levels of proliferating cell nuclear antigen (PCNA), cyclin D1, P21 and P16 and the phosphorylation of p38MAPK, ERK1/2 and Stat1 in the cells.
RESULTS:
Compared with control group, IFN-γ treatment obviously inhibited the growth and proliferation of Hepa1-6 cells, induced cell cycle arrest at G0/G1 phase, reduced the protein expression of PCNA and cyclin D1, and increased the protein expression of P21. IL-17 alone had no effect on the growth of Hepa1-6 cells. In the combined treatment, IL-17 significantly antagonized the effects of IFN-γ. Compared with those treated with IFN-γ alone, the cells with the combined treatment showed significantly decreased G0/G1 cell population, increased the protein expressions of PCNA and cyclin D1, and decreased the protein expression of P21. IL-17 significantly inhibited IFN-γ-induced phosphorylation of p38MAPK and ERK1/2 without affecting the phosphorylation of Stat1.
CONCLUSIONS
IL-17 obviously reverses the antitumor effects of IFN-γ to promote the proliferation of mouse hepatoma cells and accelerate the development of hepatocellular carcinoma.
Animals
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Interferon-gamma
;
antagonists & inhibitors
;
Interleukin-17
;
pharmacology
;
Liver Neoplasms
;
metabolism
;
pathology
;
Mice
;
Neoplasm Proteins
;
metabolism
;
Proliferating Cell Nuclear Antigen
;
metabolism
5.Rdh13 deficiency weakens carbon tetrachloride-induced liver injury by regulating Spot14 and Cyp2e1 expression levels.
Xiaofang CUI ; Benting MA ; Yan WANG ; Yan CHEN ; Chunling SHEN ; Ying KUANG ; Jian FEI ; Lungen LU ; Zhugang WANG
Frontiers of Medicine 2019;13(1):104-111
Mitochondrion-localized retinol dehydrogenase 13 (Rdh13) is a short-chain dehydrogenase/reductase involved in vitamin A metabolism in both humans and mice. We previously generated Rdh13 knockout mice and showed that Rdh13 deficiency causes severe acute retinal light damage. In this study, considering that Rdh13 is highly expressed in mouse liver, we further evaluated the potential effect of Rdh13 on liver injury induced by carbon tetrachloride (CCl). Although Rdh13 deficiency showed no significant effect on liver histology and physiological functions under regular culture, the Rdh13 mice displayed an attenuated response to CCl-induced liver injury. Their livers also exhibited less histological changes and contained lower levels of liver-related metabolism enzymes compared with the livers of wild-type (WT) mice. Furthermore, the Rdh13 mice had Rdh13 deficiency and thus their liver cells were protected from apoptosis, and the quantity of their proliferative cells became lower than that in WTafter CCl exposure. The ablation of Rdh13 gene decreased the expression levels of thyroid hormone-inducible nuclear protein 14 (Spot14) and cytochrome P450 (Cyp2e1) in the liver, especially after CCl treatment for 48 h. These data suggested that the alleviated liver damage induced by CCl in Rdh13 mice was caused by Cyp2e1 enzymes, which promoted reductive CCl metabolism by altering the status of thyroxine metabolism. This result further implicated Rdh13 as a potential drug target in preventing chemically induced liver injury.
Alcohol Oxidoreductases
;
deficiency
;
genetics
;
Animals
;
Carbon Tetrachloride Poisoning
;
enzymology
;
Chemical and Drug Induced Liver Injury
;
enzymology
;
pathology
;
Cytochrome P-450 CYP2E1
;
metabolism
;
Female
;
Immunohistochemistry
;
Liver
;
drug effects
;
enzymology
;
pathology
;
Male
;
Mice
;
Mice, 129 Strain
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Nuclear Proteins
;
metabolism
;
Transcription Factors
;
metabolism
6.Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway.
Jianlu GUO ; Pinfang KANG ; Lei ZHU ; Shuo SUN ; Min TAO ; Heng ZHANG ; Bi TANG
Journal of Southern Medical University 2018;38(11):1288-1293
OBJECTIVE:
To investigate whether CaN-NFAT3 pathway mediates the protective effects of aldehyde dehydrogenase (ALDH) 2 in high glucose-treated neonatal rat ventricular myocytes.
METHODS:
The ventricular myocytes were isolated from the heart of neonatal (within 3 days) SD rats by enzyme digestion and cultured in the presence of 5-Brdu. After reaching confluence, the cultured ventricular myocytes were identified using immunofluorescence assay for -SA protein. The cells were then cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium in the presence of ALDH2 agonist Alda-1, ALDH 2 inhibitor Daidzin, or Alda-1 and NFAT3 inhibitor (11R-VIVIT). Fluorescent probe and ELISA were used to detect intracellular Ca concentration and CaN content, respectively; ALDH2, CaN and NFAT3 protein expressions in the cells were detected using Western blotting.
RESULTS:
Compared with cells cultured in normal glucose, the cells exposed to high glucose showed a significantly decreased expression of ALDH2 protein ( < 0.05) and increased expressions of CaN ( < 0.05) and NFAT3 proteins with also increased intracellular CaN and Ca concentrations ( < 0.01). Alda-1 treatment significantly lowered Ca concentration ( < 0.05), intracellular CaN content ( < 0.01), and CaN and NFAT3 protein expressions ( < 0.05), and increased ALDH2 protein expression ( < 0.05) in high glucose- exposed cells; Daidzin treatment significantly increased Ca concentration ( < 0.01) and intracellular CaN content ( < 0.05) in the exposed cells. Compared with Alda-1 alone, treatment of the high glucose-exposed cells with both Alda-1 and 11R-VIVIT did not produce significant changes in the expression of ALDH2 protein (>0.05) but significantly reduced the expression of NFAT3 protein ( < 0.05).
CONCLUSIONS
Mitochondrial ALDH2 protects neonatal rat cardiomyocytes against high glucose-induced injury possibly by negatively regulating Ca-CaN-NFAT3 signaling pathway.
Aldehyde Dehydrogenase, Mitochondrial
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Animals, Newborn
;
Benzamides
;
pharmacology
;
Benzodioxoles
;
pharmacology
;
Calcium
;
metabolism
;
Cells, Cultured
;
Culture Media
;
Enzyme Inhibitors
;
pharmacology
;
Glucose
;
administration & dosage
;
pharmacology
;
Isoflavones
;
pharmacology
;
Mitochondria, Heart
;
enzymology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
NFATC Transcription Factors
;
metabolism
;
Nuclear Pore Complex Proteins
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
7.Effects of estrogen on epidermis growth of mice and proliferation of human epidermal cell line HaCaT and its mechanism.
Tao ZHOU ; Jing CHEN ; Zongwei HUANG ; Li FANG ; Yu CHEN ; Yajie CHEN ; Yizhi PENG
Chinese Journal of Burns 2016;32(5):299-304
OBJECTIVETo observe the effects of estrogen on epidermis growth of mice and proliferation of keratinocytes (human epidermal cell line HaCaT), and to explore its mechanism.
METHODS(1) Five adult C57BL/6 mice in estrus cycle were identified by vaginal exfoliative cytology diagnosis and set as estrus group, while another 5 adult C57BL/6 mice with ovary resected before sexual development were set as ovariectomized group. The full-thickness skin from the tail root of mice in two groups were collected. The thickness of epidermis was observed and measured after HE staining. The distribution of proliferating cell nuclear antigen (PCNA)-positive cells in epidermis was observed by immunohistochemical staining, the number of which was counted. (2) HaCaT cells in logarithmic growth phase were cultured with RPMI 1640 nutrient solution containing 10% fetal bovine serum, and they were divided into negative control group (NC), pure estradiol group (PE), protein kinase B (Akt) inhibitor group (AI), and extracellular signal-regulated kinase (ERK) inhibitor group (EI) according to the random number table, with 20 wells in each group. To nutrient solution of each group, 1 μL dimethyl sulfoxide, 1 μL 17β-estradiol (100 nmol/L), 1 μL LY294002 (10 μmol/L), and 1 μL PD98059 (30 μmol/L) were added in group NC, group PE, group AI, and group EI respectively, and the last two groups were added with 1 μL 17β-estradiol (100 nmol/L) in addition. At post culture hour (PCH) 0 (immediately after culture), 24, 48, 72, 5 wells of cells from each group were collected to detect the proliferation activity of cells by cell counting kit 8 and microplate reader. (3) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above-mentioned methods, with 3 wells in each group. At PCH 72, cell cycle distribution was detected by flow cytometer to calculate proliferation index (PI) of cells. (4) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above-mentioned methods, with 3 dishes in each group. At PCH 72, the protein levels of phosphorylated Akt (p-Akt), phosphorylated ERK (p-ERK), and PCNA were determined with Western blotting. The cell experiments were repeated for 3 times. Data were processed with t test, one-way analysis of variance, analysis of variance of factorial design, and LSD test.
RESULTS(1) The epidermis thickness of mice in ovariectomized group was (33.5±3.0) μm, which was obviously thinner than that in estrus group [(51.4±3.1) μm, t=20.7, P<0.01]. The PCNA-positive cells mainly aggregated in the basal layer of epidermis of mice in two groups. The number of PCNA-positive cells in epidermis of mice in ovariectomized group was 37±12 per 200 fold visual field, obviously fewer than that in estrus group (96±15 per 200 fold visual field, t=15.3, P<0.01). (2) During PCH 0 to 48, there were no significant differences in the proliferation activity of cells between group PE and group NC (with P values above 0.05). At PCH 72, compared with that in group NC, the proliferation activity of cells in group PE was obviously increased (P<0.01). The proliferation activity of cells in groups AI and EI was obviously lower than that in the previous two groups (with P values below 0.01). (3) Compared with that in group NC [(51.6±1.1)%], the PI of cells in group PE was obviously increased [(58.5±0.8)%, P<0.05]. The PI values of cells in groups AI and EI were (34.9±0.8)% and (48.2±0.4)% respectively, both obviously lower than those in the previous two groups (with P values below 0.01). (4) Compared with that of group NC (0.566±0.034), the protein level of p-Akt in cells of group PE was significantly increased (1.048±0.077, P<0.01). Compared with that of group PE, the protein level of p-Akt was obviously decreased in cells of groups AI and EI (respectively 0.682±0.095 and 0.672±0.019, with P values below 0.01). Compared with that of group NC (0.469±0.013), the protein level of p-ERK obviously increased in cells of groups PE, AI, and EI (respectively 1.064±0.089, 1.010±0.038, 0.778±0.065, with P values below 0.01). The protein level of p-ERK in cells of group EI was obviously lower than that in group PE (P<0.01). Compared with that of group NC (0.386±0.053), the protein level of PCNA was obviously increased in cells of group PE (0.743±0.043, P<0.01). The protein levels of PCNA in cells of groups AI and EI were 0.264±0.019 and 0.223±0.065 respectively, both obviously lower than those in the previous two groups (with P values below 0.01).
CONCLUSIONSLack of estrogen damages the growth ability of epidermis of mice. Estrogen (17β-estradiol) can promote the proliferation of HaCaT cells by increasing the expression of PCNA via activating ERK/Akt signaling pathway.
Animals ; Cell Cycle ; Cell Line ; Cell Proliferation ; drug effects ; Epidermis ; cytology ; drug effects ; growth & development ; Estradiol ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; antagonists & inhibitors ; Female ; Humans ; Keratinocytes ; cytology ; drug effects ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Proliferating Cell Nuclear Antigen ; metabolism ; Proto-Oncogene Proteins c-akt ; antagonists & inhibitors ; Signal Transduction
8.Effect and its molecular mechanisms of curcumin on pulmonary artery smooth muscle cells in rat model with chronic obstructive pulmonary disease.
Xiangang LIN ; Yenong CHEN ; Zhuqing LIU
Journal of Zhejiang University. Medical sciences 2016;45(5):469-476
To investigate the effects and the underlying molecular mechanisms of curcumin on pulmonary artery smooth muscle cells in rat model with chronic obstructive pulmonary disease (COPD).A total of 75 male Wistar rats were randomly divided into control group (group CN), model group (group M), low-dose curcumin group (group CL), medium-dose curcumin group (group CM) and high-dose curcumin group (group CH). HE staining was used to observe the morphology of pulmonary artery. Proliferating cell nuclear antigen (PCNA), apoptosis-related protein Bcl-2 and Bax were detected by immunohistochemical staining. TUNEL kit was used to analyze the effects of curcumin on apoptosis of smooth muscle cells, and the protein expressions of SOCS-3/JAK2/STAT pathway in lung tissues were determined by western blot.Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVMI) in group M were significantly higher than those in group CN, group CH and group CM (all<0.05). HE staining and TUNEL kit test showed that the number of pulmonary artery smooth muscle cells had a significant increase in group M, while the pulmonary artery tube became thin, and the smooth muscle cells shrinked in group CM and group CH. Immunohistochemistry showed that PCNA and Bcl-2 in group M were significantly higher than those in group CN (all<0.05), while Bax expression was significantly lower than that in group CN (<0.05). PCNA in group CM and group CH were significantly lower than that in group M (all<0.05), while Bax expression was significantly higher than that in group M (<0.05). Western blot showed that SOCS-3 protein was significantly decreased in group M, while the p-JAK2, p-STAT1, p-STAT3 were significantly increased (all<0.05). Compared with group M, SOCS-3 protein in group CM and group CH were significantly increased (all<0.05), while the p-JAK2, p-STAT3 were significantly reduced (all<0.05).Curcumin could promote the apoptosis of smooth muscle cells in rats with COPD, and improve the mean pulmonary artery pressure and RVMI through stimulating SOCS-3/JAK2/STAT signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
physiology
;
Arterial Pressure
;
drug effects
;
physiology
;
Curcumin
;
pharmacology
;
Hypertrophy, Right Ventricular
;
pathology
;
physiopathology
;
Janus Kinase 2
;
drug effects
;
physiology
;
Lung
;
chemistry
;
drug effects
;
Male
;
Myocytes, Smooth Muscle
;
drug effects
;
pathology
;
Proliferating Cell Nuclear Antigen
;
drug effects
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
drug effects
;
metabolism
;
Pulmonary Artery
;
drug effects
;
pathology
;
Pulmonary Disease, Chronic Obstructive
;
pathology
;
physiopathology
;
Rats
;
Rats, Wistar
;
STAT Transcription Factors
;
Suppressor of Cytokine Signaling 3 Protein
;
drug effects
;
physiology
;
Ventricular Pressure
;
drug effects
;
bcl-2-Associated X Protein
;
drug effects
;
metabolism
9.Effect of Astragalus mongholicus polysaccharides on gene expression profiles of dendritic cells isolated from healthy donors.
Chaojun CHEN ; Qiang FU ; Yuejun LI ; Zhiliang LI
Journal of Southern Medical University 2015;35(12):1802-1805
OBJECTIVETo investigate the anti-atherosclerosis mechanism of Astragalus mongholicus polysaccharides (APS) by examining its effect on gene expression profiles of the dendritic cells (DCs) from healthy donors.
METHODSPeripheral blood DCs from healthy donors were incubated with 200 mg/L APS overnight, and changes in the gene expression profiles were investigated using microarray technique and RT-PCR.
RESULTSCompared with the control cells, APS-treated DCs showed significantly up-regulated expressions of CD36 (0.97 ± 0.23 vs 5.45 ± 1.14) and IL-27 (1.08 ± 0.22 vs 2.97 ± 0.61) and down-regulated expression of expression of IFI16 (0.98 ± 0.18 vs 0.46 ± 0.11).
CONCLUSIONSAPS can promote the maturation and differentiation of DCs by up-regulating CD36 and IL-27 and down-regulating IFI16, and thus positively affects the occurrence and progression of the atherosclerosis.
Astragalus Plant ; chemistry ; CD36 Antigens ; metabolism ; Cell Differentiation ; Dendritic Cells ; drug effects ; Humans ; Interleukins ; metabolism ; Nuclear Proteins ; metabolism ; Phosphoproteins ; metabolism ; Polysaccharides ; pharmacology ; Transcriptome
10.Effect of platelet-derived growth factor-BB on rat corpus cavernosum smooth muscle cell proliferation, migration and phenotypic modulation.
Fengzhi CHEN ; Shuhua HE ; Haitao SHAN ; Haibo ZHANG ; Yanbing LIAN ; Anyang WEI
Journal of Southern Medical University 2015;35(7):971-976
OBJECTIVETo study the effect of platelet-derived growth factor-BB (PDGFBBB) on rat corpus cavernosum smooth muscle (CCSM) cell proliferation, migration and phenotypic modulation and explore the underlying mechanisms.
METHODSWistar rat CCSM cells were obtained through a modified tissue culture method and identified by immunofluorescence assay. The effect of PDGFBB on the proliferation of CCSM cells was investigated using a CCK-8 kit and the optimum PDGFBB concentration for cell treatment was determined. CCSM cells were treated with vehicle or PDGF-BB at the optimum concentration, and the cell migration was examined using scratch assay; the mRNA expression of the transcription factor myocardin and the contractile phenotype markers αSMA and SMMHC in CCSM cells were determined by qRT-PCR at 24 h and 48 h. The protein expression of myocardin in CCSM cells incubated with PDGFBB for 0, 24 and 48 h was examined by Western blotting.
RESULTIn CCSM cell culture, 96.5%and 96% of the cells were positive for αSMA and smoothelin, respectively. PDGFBB at different concentrations markedly promoted the proliferation of CCSM cells; the optimum PDGFBB concentration for enhancing cell proliferation was 12.5 ng/mL, which induced the migration of CCSM cells and significantly reduced the mRNA expressions of myocardin, αSMA and SMMHC (P<0.01). Exposure to PDGFBB decreased the protein expression of myocardin as the exposure time extended (within 48 h).
CONCLUSIONCCSM cells of a high purity can be obtained by the modified tissue culture method. PDGFBB can promote the proliferation and migration of CCSM cells and cause a phenotypic conversion from the contractile to the synthetic type possibly by down-regulating myocardin.
Actins ; metabolism ; Animals ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Down-Regulation ; Male ; Myocytes, Smooth Muscle ; cytology ; drug effects ; Myosin Heavy Chains ; metabolism ; Nuclear Proteins ; metabolism ; Penis ; cytology ; Phenotype ; Proto-Oncogene Proteins c-sis ; pharmacology ; RNA, Messenger ; Rats ; Rats, Wistar ; Trans-Activators ; metabolism

Result Analysis
Print
Save
E-mail