1.A 4-year cohort study of the effects of PNPLA3 rs738409 genotypes on liver fat and fibrosis and gut microbiota in a non-fatty liver population.
Satoshi SATO ; Chikara IINO ; Takafumi SASADA ; Keisuke FURUSAWA ; Kenta YOSHIDA ; Kaori SAWADA ; Tatsuya MIKAMI ; Shinsaku FUKUDA ; Shigeyuki NAKAJI ; Hirotake SAKURABA
Environmental Health and Preventive Medicine 2025;30():17-17
BACKGROUND:
Many factors are associated with the development and progression of liver fat and fibrosis; however, genetics and the gut microbiota are representative factors. Moreover, recent studies have indicated a link between host genes and the gut microbiota. This study investigated the effect of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 (C > G), which has been reported to be most involved in the onset and progression of fatty liver, on liver fat and fibrosis in a cohort study related to gut microbiota in a non-fatty liver population.
METHODS:
This cohort study included 214 participants from the health check-up project in 2018 and 2022 who had non-fatty liver with controlled attenuation parameter (CAP) values <248 dB/m by FibroScan and were non-drinkers. Changes in CAP values and liver stiffness measurement (LSM), liver-related items, and gut microbiota from 2018 to 2022 were investigated separately for PNPLA3 rs738409 CC, CG, and GG genotypes.
RESULTS:
Baseline values showed no difference among the PNPLA3 rs738409 genotypes for any of the measurement items. From 2018 to 2022, the PNPLA3 rs738409 CG and GG genotype groups showed a significant increase in CAP and body mass index; no significant change was observed in the CC genotype group. LSM increased in all genotypes, but the rate of increase was highest in the GG genotype, followed by the CG and CC genotypes. Fasting blood glucose levels increased in all genotypes; however, HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) increased significantly only in the GG genotype. HDL (high-density lipoprotein) and LDL (low-density lipoprotein) cholesterol levels significantly increased in all genotypes, whereas triglycerides did not show any significant changes in any genotype. As for the gut microbiota, the relative abundance of Feacalibacterium in the PNPLA3 rs738409 GG genotype decreased by 2% over 4 years, more than 2-fold compared to CC and GG genotypes. Blautia increased significantly in the CC group.
CONCLUSION
The results suggest that PNPLA3 G-allele carriers of non-fatty liver develop liver fat and fibrosis due to not only obesity and insulin resistance but also the deterioration of gut microbiota, which may require a relatively long course of time, even years.
Humans
;
Gastrointestinal Microbiome
;
Male
;
Female
;
Membrane Proteins/metabolism*
;
Lipase/genetics*
;
Middle Aged
;
Liver Cirrhosis/epidemiology*
;
Cohort Studies
;
Genotype
;
Adult
;
Non-alcoholic Fatty Liver Disease/microbiology*
;
Polymorphism, Single Nucleotide
;
Acyltransferases
;
Phospholipases A2, Calcium-Independent
2.Interplay between gut microbiota and intestinal lipid metabolism:mechanisms and implications.
Journal of Zhejiang University. Science. B 2025;26(10):961-971
The gut microbiota is an indispensable symbiotic entity within the human holobiont, serving as a critical regulator of host lipid metabolism homeostasis. Therefore, it has emerged as a central subject of research in the pathophysiology of metabolic disorders. This microbial consortium orchestrates key aspects of host lipid dynamics-including absorption, metabolism, and storage-through multifaceted mechanisms such as the enzymatic processing of dietary polysaccharides, the facilitation of long-chain fatty acid uptake by intestinal epithelial cells (IECs), and the bidirectional modulation of adipose tissue functionality. Mounting evidence underscores that gut microbiota-derived metabolites not only directly mediate canonical lipid metabolic pathways but also interface with host immune pathways, epigenetic machinery, and circadian regulatory systems, thereby establishing an intricate crosstalk that coordinates systemic metabolic outputs. Perturbations in microbial composition (dysbiosis) drive pathological disruptions to lipid homeostasis, serving as a pathogenic driver for conditions such as obesity, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD). This review systematically examines the emerging mechanistic insights into the gut microbiota-mediated regulation of intestinal lipid metabolism, while it elucidates its translational implications for understanding metabolic disease pathogenesis and developing targeted therapies.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Lipid Metabolism
;
Animals
;
Intestinal Mucosa/metabolism*
;
Homeostasis
;
Dysbiosis
;
Obesity/metabolism*
;
Intestines/microbiology*
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Metabolic Diseases/metabolism*
3.Changes in intestinal flora associated with childhood sleep-disordered breathing and the pathogenesis of non-alcoholic fatty liver disease in children.
Xiaonan YANG ; Hongting HUA ; Dong WANG ; Dongyu SI ; Ruijia GAN ; Dongdong MENG ; Chaobing GAO
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(11):1038-1044
Objective:To explore the interaction between pediatric sleep-disordered breathing(SDB), the intestinal microbiota, and pediatric non-alcoholic fatty liver disease(NAFLD). Methods:A total of 63 non-obese children(47 children with SDB in the experimental group and 16 without SDB in the control group) were enrolled in this study. The liver function and degree of SDB were assessed in both groups. High-throughput 16S rRNA sequencing was conducted to detect the composition and functional variations of the intestinal microbiota in the two groups of children. Results:Compared with children in the experimental group, serum ALT and AST levels were higher in the control group. and the relative proteobacteria abundance of intestinal flora increased, and the relative abundance of Bacteroidetes decreased significantly. Function including membrane transport, carbohydrate metabolism and lipid metabolism, were enriched in the intestinal microbiota of children with SDB. Conclusion:The composition and functional annotation of the pediatric liver functional status and gut microbiota were significantly different between the two groups of children with and without SDB. Changes in SDB-associated intestinal bacterial abundance may be related to the pathogenesis of pediatric NAFLD.
Humans
;
Non-alcoholic Fatty Liver Disease/microbiology*
;
Gastrointestinal Microbiome
;
Child
;
Male
;
Sleep Apnea Syndromes/microbiology*
;
Female
;
RNA, Ribosomal, 16S/genetics*
;
Bacteroidetes
;
Proteobacteria/isolation & purification*
;
Lipid Metabolism
4.New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Xu ZHANG ; Xuetao JI ; Qian WANG ; John Zhong LI
Protein & Cell 2018;9(2):164-177
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and a significant global health problem with substantial rise in prevalence over the last decades. It is becoming increasingly clear that NALFD is not only predominantly a hepatic manifestation of metabolic syndrome, but also involves extra-hepatic organs and regulatory pathways. Therapeutic options are limited for the treatment of NAFLD. Accordingly, a better understanding of the pathogenesis of NAFLD is critical for gaining new insight into the regulatory network of NAFLD and for identifying new targets for the prevention and treatment of NAFLD. In this review, we emphasize on the current understanding of the inter-organ crosstalk between the liver and peripheral organs that contributing to the pathogenesis of NAFLD.
Adipose Tissue
;
pathology
;
Animals
;
Extracellular Vesicles
;
metabolism
;
Humans
;
Hypothalamus
;
metabolism
;
Intestines
;
microbiology
;
pathology
;
Non-alcoholic Fatty Liver Disease
;
etiology
;
metabolism
;
microbiology
;
pathology
5.Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota.
Ruiting HAN ; Junli MA ; Houkai LI
Frontiers of Medicine 2018;12(6):645-657
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.
Animals
;
Bile Acids and Salts
;
metabolism
;
Choline
;
metabolism
;
Dietary Supplements
;
Energy Metabolism
;
Fecal Microbiota Transplantation
;
Gastrointestinal Microbiome
;
Humans
;
Insulin Resistance
;
Intestines
;
microbiology
;
Non-alcoholic Fatty Liver Disease
;
microbiology
;
therapy

Result Analysis
Print
Save
E-mail