1.Association of insulin signaling pathway -related gene polymorphisms and gene -gene interactions with MAFLD in obese children.
Xiang XIAO ; Junxia YAN ; Ning'an XU ; Rutong KANG ; Jiayou LUO ; Yan ZHONG
Journal of Central South University(Medical Sciences) 2023;48(4):516-525
OBJECTIVES:
Insulin signaling pathway plays an important role in metabolic associated fatty liver disease (MAFLD), however, the association between polymorphisms of genes related to insulin signaling pathway and MAFLD remains unclear. This study aims to investigate the association between insulin signaling pathway-related gene polymorphisms and gene-gene interactions with MAFLD susceptibility in obese children so as to provide scientific basis for further study of genetic mechanism.
METHODS:
A total of 502 obese children with MAFLD who admitted to Hunan Provincial Children's Hospital from September 2019 to October 2021, were recruited as a case group, and 421 obese children with non-MAFLD admitted during the same period were recruited as a control group. Socio-demographic information, preterm birth history, eating habits, and exercise status of the subjects were collected by inquiry survey, and anthropometric information was collected by physical measurement. At the same time, 2 mL of venous blood was collected to extract DNA, and the polymorphism of insulin signaling pathway-related genes (5 representative candidate genes, 12 variants) was detected. Multivariate Logistic regression analysis was used to investigate the association between insulin signaling pathway-related gene polymorphisms and MAFLD in obese children.
RESULTS:
After adjusting for confounder factors, INS rs3842748 was significantly associated with the risk of MAFLD in obese children in allele, heterozygous, and dominant models [OR and 95% CI 1.749 (1.053 to 2.905), 1.909 (1.115 to 3.267), 1.862 (1.098 to 3.157), all P<0.05]; INS rs3842752 was significantly associated with the risk of MAFLD in obese children in heterozygous and dominant models [OR and 95% CI 1.736 (1.028 to 2.932), 1.700 (1.015 to 2.846), all P<0.05]. NR1H3 rs3758674 was significantly correlated with the risk of MAFLD in obese children in allele model [OR and 95% CI 0.716 (0.514 to 0.997), P<0.05]. SREBP-1c rs2297508 was significantly associated with the risk of MAFLD in obese children in allele and dominant models [OR and 95% CI 0.772 (0.602 to 0.991) and 0.743 (0.557 to 0.991), all P<0.05]. SREBP-1c rs8066560 was significantly associated with the risk of MAFLD in obese children in allele, heterozygous, and dominant models [OR and 95% CI 0.759 (0.589 to 0.980), 0.733 (0.541 to 0.992), 0.727 (0.543 to 0.974), all P<0.05]. NR1H3 rs3758674 mutant C and SREBP-1c rs2297508 mutant G had interaction in the development of MAFLD in obese children [OR and 95% CI 0.407 (0.173 to 0.954), P<0.05].
CONCLUSIONS
The INS, NR1H3, and SREBP-1c gene polymorphisms in the insulin signaling pathway are associated with the susceptibility of MAFLD in obese children, but the functions and mechanisms of these genes need to be further studied.
Child
;
Infant, Newborn
;
Humans
;
Female
;
Pediatric Obesity/genetics*
;
Sterol Regulatory Element Binding Protein 1
;
Premature Birth
;
Non-alcoholic Fatty Liver Disease
;
Signal Transduction/genetics*
;
Insulins
2.Analysis of clinical characteristics and risk factors of hepatic fibrosis in children with chronic hepatitis B combined with metabolic-related fatty liver disease.
Wwei LI ; Li Na JIANG ; Bo Kang ZHAO ; Hong Yang LIU ; Jing Min ZHAO
Chinese Journal of Hepatology 2023;31(6):601-607
Objective: To compare the clinical and pathological features of children with chronic viral hepatitis B combined with metabolic-associated fatty liver disease (CHB-MAFLD) and chronic viral hepatitis B alone (CHB alone), and to further explore the effect of MAFLD on the progression of hepatic fibrosis in CHB. Methods: 701 initially treated CHB children confirmed by liver biopsy admitted to the Fifth Medical Center of the PLA General Hospital from January 2010 to December 2021 were collected continuously. They were divided into CHB-MAFLD and CHB-alone groups according to whether they were combined with MAFLD. A retrospective case-control study was conducted. CHB-MAFLD was used as the case group, and 1:2 propensity score matching was performed with the CHB alone group according to age and gender, including 56 cases in the CHB-MAFLD group and 112 cases in the CHB alone group. The body mass index (BMI), metabolic complications, laboratory indicators, and pathological characteristics of liver tissue were compared between the two groups. The related factors affecting liver disease progression in CHB were analyzed by a binary logistic regression model. The measurement data between groups were compared using the t-test and rank sum test. The χ (2) test was used for the comparison of categorical data between groups. Results: Alanine aminotransferase (ALT, P = 0.032) and aspartate aminotransferase (AST, P = 0.003) levels were lower in the CHB-MAFLD group than those in the CHB alone group, while BMI (P < 0.001), triglyceride (TG, P < 0.001), total cholesterol (P = 0.016) and the incidence of metabolic syndrome (P < 0.001) were higher in the CHB alone group. There were no statistically significant differences in HBsAg quantification or HBV DNA load between the two groups (P > 0.05). Histologically, the proportion of significant liver fibrosis (S2-S4) was higher in the CHB-MAFLD group than that in the CHB alone group (67.9% vs. 49.1%, χ (2) = 5.311, P = 0.021). Multivariate regression results showed that BMI (OR = 1.258, 95% CI: 1.145 ~ 1.381, P = 0.001) and TG (OR = 12.334, 95% CI: 3.973 ~ 38.286, P < 0.001) were the risk factors for hepatic steatosis occurrence in children with CHB. MAFLD (OR = 4.104, 95% CI: 1.703 ~ 9.889, P = 0.002), liver inflammation (OR = 3.557, 95% CI: 1.553 ~ 8.144, P = 0.003), and γ-glutamyl transferase (OR = 1.019, 95% CI: 1.001 to 1.038, P = 0.038) were independent risk factors for significant hepatic fibrosis in children with CH. Conclusion: MAFLD occurrence is related to metabolic factors in children with CHB. Additionally, the combination of MAFLD may promote liver fibrosis progression in CHB patients.
Humans
;
Child
;
Hepatitis B, Chronic/pathology*
;
Retrospective Studies
;
Case-Control Studies
;
Hepatitis B virus/genetics*
;
Liver Cirrhosis/pathology*
;
Non-alcoholic Fatty Liver Disease/complications*
;
Risk Factors
3.The role of apolipoprotein C3 in the regulation of nonalcoholic fatty liver disease, glucose and lipid metabolism, and islet β cell function.
Shan YAN ; Zhi-Yong DING ; Yuan GAO ; Wang-Jia MAO ; Xiao-Yun CHENG
Acta Physiologica Sinica 2023;75(6):767-778
As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet β cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet β cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet β cell function, and the underlying mechanism remains to be further discussed.
Apolipoprotein C-III/genetics*
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Glucose/metabolism*
;
Lipid Metabolism
;
Humans
;
Animals
;
Hypertriglyceridemia/metabolism*
;
Islets of Langerhans/metabolism*
4.Diosgenin alleviates NAFLD induced by a high-fat diet in rats via mTOR/SREBP-1c/HSP60/MCAD/SCAD signaling pathway.
Su-Wen CHEN ; Guo-Liang YIN ; Chao-Yuan SONG ; De-Cheng MENG ; Wen-Fei YU ; Xin ZHANG ; Ya-Nan FENG ; Peng-Peng LIANG ; Feng-Xia ZHANG
China Journal of Chinese Materia Medica 2023;48(19):5304-5314
This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid β oxidation in the liver.
Rats
;
Male
;
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Sterol Regulatory Element Binding Protein 1/metabolism*
;
Diet, High-Fat/adverse effects*
;
Diosgenin/metabolism*
;
Chaperonin 60/therapeutic use*
;
Rats, Sprague-Dawley
;
Liver
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Triglycerides
;
RNA, Messenger/metabolism*
;
Simvastatin/therapeutic use*
;
Body Weight
;
Lipid Metabolism
;
Mammals/metabolism*
6.Olanzapine causes non-alcoholic fatty liver disease via inhibiting the secretion of apolipoprotein A5.
Rong LI ; Wenqiang ZHU ; Piaopiao HUANG ; Chen DING ; Yaxin TANG ; Ping'an LIAN ; Xiansheng HUANG
Journal of Central South University(Medical Sciences) 2022;47(6):730-738
OBJECTIVES:
Long-term treatment of olanzapine, the most widely-prescribed second-generation antipsychotic, remarkably increases the risk of non-alcoholic fatty liver disease (NAFLD), whereas the mechanism for olanzapine-induced NAFLD remains unknown. Excessive hepatic fat accumulation is the basis for the pathogenesis of NAFLD, which results from the disturbance of TG metabolism in the liver. Apolipoprotein A5 (ApoA5) is a key regulator for TG metabolism in vivo that promotes TG accumulation in hepatocytes, thereby resulting in the development of NAFLD. However, there are no data indicating the role of apoA5 in olanzapine-induced NAFLD. Therefore, this study aims to investigate the role of apoA5 in olanzapine-induced NAFLD.
METHODS:
This study was carried out via animal studies, cell experiment, and ApoA5 gene knockdown experiment. Six-week-old male C57BL/6J mice were randomized into a control group, a low-dose group, and a high-dose group, which were treated by 10% DMSO, 3 mg/(kg·d) olanzapine, and 6 mg/(kg·d) olanzapine, respectively for 8 weeks. The lipid levels in plasma, liver function indexes, and expression levels of ApoA5 were detected. HepG2 cells were treated with 0.1% DMSO (control group), 25 μmol/L olanzapine (low-dose group), 50 μmol/L olanzapine (medium-dose group), and 100 μmol/L olanzapine (high-dose group) for 24 h. HepG2 cells pretreated with 100 μmol/L olanzapine were transfected with siRNA and scrambled siRNA (negative control), respectively. We observed the changes in lipid droplets within liver tissues and cells using oil red O staining and fat deposition in liver tissues using HE staining. The mRNA and protein levels of ApoA5 were determined by real-time PCR and Western blotting, respectively.
RESULTS:
After intervention with 3 and 6 mg/(kg·d) olanzapine for 8 weeks, there was no significant difference in body weight among the 3 groups (P>0.05). Olanzapine dose-dependently increased the plasma TG, ALT and AST levels, and reduced plasma ApoA5 levels (all P<0.05), whereas there was no significant difference in plasma cholesterol (HDL-C, LDL-C, and TC) levels among the 3 groups (all P>0.05). Olanzapine dose-dependently up-regulated ApoA5 protein levels in liver tissues (all P<0.05), but there was no significant change in ApoA5 mRNA expression among groups (P>0.05). In the control group, the structure of liver tissues was intact, the morphology of liver cells was regular, and only a few scattered lipid droplets were found in the cells. In the olanzapine-treated group, there was a large amount of lipid deposition in hepatocytes, and cells were balloon-like and filled with lipid droplet vacuoles. The nucleus located at the edge of cell, and the number of lipid droplets was increased significantly, especially in the high-dose group. Likewise, when HepG2 cells were treated with olanzapine for 24 h, the number and size of lipid droplets were significantly elevated in a dose-dependent manner. Moreover, olanzapine dose-dependently up-regulated ApoA5 protein levels in HepG2 cells (all P<0.05), but there was no significant difference in ApoA5 mRNA expression among groups (P>0.05). Compared with the HepG2 cells transfected with scrambled siRNA, the number and size of lipid droplets in HepG2 cells transfected with ApoA5 siRNA were significantly reduced.
CONCLUSIONS
The short-term intervention of olanzapine does not significantly increase body weight of mice, but it can directly induce hypertriglyceridemia and NAFLD in mice. Olanzapine inhibits hepatic apoA5 secretion but does not affect hepatic apoA5 synthesis, resulting in the pathogenesis of NAFLD. Inhibition of apoA5 secretion plays a key role in the development of olanzapine-related NAFLD, which may serve as an intervention target for this disease.
Animals
;
Apolipoprotein A-V/genetics*
;
Body Weight
;
Dimethyl Sulfoxide/metabolism*
;
Liver/metabolism*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Non-alcoholic Fatty Liver Disease/chemically induced*
;
Olanzapine/metabolism*
;
RNA, Messenger/metabolism*
;
RNA, Small Interfering
;
Triglycerides
7.Bioinformatics screening and analysis of key differentially expressed genes characteristics in nonalcoholic fatty liver disease.
Jie Xia DING ; Wen Bao HUANG ; Xiao Xian JIANG ; Li Dan ZHANG ; Hong FANG ; Jie JIN
Chinese Journal of Hepatology 2022;30(3):297-303
Objective: To screen and analyze the key differentially expressed genes characteristics in nonalcoholic fatty liver disease (NAFLD) with bioinformatics method. Methods: NAFLD-related expression matrix GSE89632 was downloaded from the GEO database. Limma package was used to screen differentially expressed genes (DEGs) in healthy, steatosis (SS), and nonalcoholic steatohepatitis (NASH) samples. WGCNA was used to analyze the output gene module. The intersection of module genes and differential genes was used to determine the differential genes characteristic, and then GO function and KEGG signaling pathway enrichment analysis were performed. The protein-protein interaction network (PPI) was constructed using the online website STRING and Cytoscape software, and the key (Hub) genes were screened. Finally, R software was used to analyze the receiver operating characteristic curve (ROC) of the Hub gene. Results: 92 differentially expressed genes characteristic were obtained through screening, which were mainly enriched in inflammatory response-related functions of "lipopolysaccharide response and molecular response of bacterial origin", as well as cancer signaling pathways of "proteoglycan in cancer" and "T-cell leukemia virus infection-related". 10 hub genes (FOS, CXCL8, SERPINE1, CYR61, THBS1, FOSL1, CCL2, MYC, SOCS3 and ATF3) had good diagnostic value. Conclusion: The differentially expressed hub genes among the 10 NAFLD disease-related characteristics obtained with bioinformatics analysis may become a diagnostic and prognostic marker and potential therapeutic target for NAFLD. However, further basic and clinical studies are needed to validate.
Computational Biology/methods*
;
Gene Expression Profiling/methods*
;
Gene Regulatory Networks
;
Humans
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Protein Interaction Maps/genetics*
8.Mechanism of Zexie Decoction in improvement of nonalcoholic fatty liver disease based on LKB1/AMPK/PGC-1α pathway.
Meng-Yao WANG ; Gai GAO ; Er-Wen LI ; Xiao-Wei ZHANG ; Hui WANG ; Jiang-Yan XU ; Zhen-Qiang ZHANG ; Pan WANG ; Zhi-Shen XIE
China Journal of Chinese Materia Medica 2022;47(2):453-460
The present study investigated the pharmaceutical effect and underlying mechanism of Zexie Decoction(ZXD) on nonalcoholic fatty liver disease(NAFLD) in vitro and in vivo via the LKB1/AMPK/PGC-1α pathway based on palmitic acid(PA)-induced lipid accumulation model and high-fat diet(HFD)-induced NAFLD model in mice. As revealed by the MTT assay, ZXD had no effect on HepG2 activity, but dose-dependently down-regulated alanine aminotransferase(ALT) and aspartate aminotransferase(AST) in the liver cell medium induced by PA, and decreased the plasma levels of ALT and AST, and total cholesterol(TC) and triglyceride(TG) levels in the liver. Nile red staining showed PA-induced intracellular lipid accumulation, significantly increased lipid accumulation of hepatocytes induced by PA, suggesting that the lipid accumulation model in vitro was properly induced. ZXD could effectively improve the lipid accumulation of hepatocytes induced by PA. Oil red O staining also demonstrated that ZXD improved the lipid accumulation in the liver of HFD mice. JC-1 staining for mitochondrial membrane potential indicated that ZXD effectively reversed the decrease in mitochondrial membrane potential caused by hepatocyte injury induced by PA, activated PGC-1α, and up-regulated the expression of its target genes, such as ACADS, CPT-1α, CPT-1β, UCP-1, ACSL-1, and NRF-1. In addition, as revealed by the Western blot and immunohistochemistry, ZXD up-regulated the protein expression levels of LKB1, p-AMPK, p-ACC, and PGC-1α in vivo and in vitro. In conclusion, ZXD can improve NAFLD and its mechanism may be related to the regulation of the LKB1/AMPK/PGC-1α pathway.
AMP-Activated Protein Kinases/metabolism*
;
Alanine Transaminase/metabolism*
;
Animals
;
Diet, High-Fat
;
Liver/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
9.Effect of total saponins from Panax japonicus on non-alcoholic steatohepatitis by regulating autophagy.
Yue LUO ; Chao-Qi LIU ; Hai-Bo HE ; Ting WANG ; Yu-Min HE ; Chang-Cheng ZHANG ; Ding YUAN ; Cheng-Fu YUAN
China Journal of Chinese Materia Medica 2021;46(9):2260-2266
Non-alcoholic steatohepatitis(NASH) was induced by high-sugar and high-fat diet in mice to investigate the intervention effect of total saponins from Panax japonicus(TSPJ) and explore its possible mechanism. Mice were fed with high-sugar and high-fat diet to establish NASH model, and intervened with different doses of TSPJ(15, 45 mg·kg~(-1)). The animals were fed for 26 weeks. The histomorphology and pathological changes of liver tissues were observed by HE staining. The transcriptional expression levels of miR-199 a-5 p, autophagy related gene 5(ATG5) and inflammatory cytokines interleukin-6(IL-6), interleukin-1β(IL-1β) and tumor necrosis factor α(TNF-α) in mouse liver were measured by quantitative Real-time polymerase chain reaction(qRT-PCR). Western blot was used to detect the expression of autophagy-related proteins ATG5, P62/SQSTM1(P62), and microtubule-associated protein light chain 3(LC3)-I/Ⅱ proteins in mouse liver. The expression of P62 protein was detected by immunofluorescence staining. In order to verify the targeting regulation relationship between miR-199 a-5 p and ATG5, miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor were transfected into Hepa 1-6 cells, and the expression of ATG5 mRNA and protein was detected. pMIR-reportor ATG5-3'UTR luciferase reporter gene plasmid was constructed and co-transfected with miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor into Hepa 1-6 cells to detect luciferase activity. In vivo, HE staining in the model group showed typical fatty degeneration and inflammatory infiltration, with increased expression of miR-199 a-5 p and decreased expression of ATG5 mRNA and protein. The expression of autophagy-associated protein P62 increased significantly, the ratio of LC3Ⅱ/Ⅰ decreased, and the transcriptional expression of inflammatory factors increased significantly. After the intervention by TSPJ, the pathological performance of liver tissue was significantly improved, the expression of miR-199 a-5 p decreased and the expression of ATG5 mRNA and protein increased, the expression of autophagy-associated protein P62 decreased significantly, the ratio of LC3Ⅱ/Ⅰ increased, and the transcriptional expression of inflammatory cytokines IL-6, IL-1β and TNF-α decreased significantly. In vitro, it was found that the expression of ATG5 mRNA and protein and luciferase activity decreased significantly in miR-199 a-5 p overexpression cells, while after inhibition of miR-199 a-5 p expression, the expression level of ATG5 mRNA and protein and luciferase activity increased. The results showed that TSPJ can improve NASH in mice fed with high-sugar and high-fat diet, and its mechanism may be related to the regulation of miR-199 a-5 p/ATG5 signal pathway, the regulation of autophagy activity and the improvement of inflammatory response of NASH.
Animals
;
Autophagy
;
Autophagy-Related Protein 5
;
Mice
;
MicroRNAs/genetics*
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Panax
;
Saponins/pharmacology*
10.Berberine mitigates nonalcoholic hepatic steatosis by downregulating SIRT1-FoxO1-SREBP2 pathway for cholesterol synthesis.
Meng-Ya SHAN ; Ying DAI ; Xiao-Dan REN ; Jing ZHENG ; Ke-Bin ZHANG ; Bin CHEN ; Jun YAN ; Zi-Hui XU
Journal of Integrative Medicine 2021;19(6):545-554
OBJECTIVE:
To investigate effects of berberine (BBR) on cholesterol synthesis in HepG2 cells with free fatty acid (FFA)-induced steatosis and to explore the underlying mechanisms.
METHODS:
A steatosis cell model was induced in HepG2 cell line fed with FFA (0.5 mmol/L, oleic acid:palmitic acid = 2:1), and then treated with three concentrations of BBR; cell viability was assessed with cell counting kit-8 assays. Lipid accumulation in cells was observed through oil red O staining and total cholesterol (TC) content was detected by TC assay. The effects of BBR on cholesterol synthesis mediators were assessed by Western blotting and quantitative polymerase chain reaction. In addition, both silent information regulator 1 (SIRT1) and forkhead box transcription factor O1 (FoxO1) inhibitors were employed for validation.
RESULTS:
FFA-induced steatosis was successfully established in HepG2 cells. Lipid accumulation and TC content in BBR groups were significantly lower (P < 0.05, P < 0.01), associated with significantly higher mRNA and protein levels of SIRT1(P < 0.05, P < 0.01), significantly lower sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy 3-methylglutaryl-CoA reductase levels (P < 0.05, P < 0.01), as well as higher Acetyl-FoxO1 protein level (P < 0.05, P < 0.01) compared to the FFA only group. Both SIRT1 inhibitor SIRT1-IN-1 and FoxO1 inhibitor AS1842856 blocked the BBR-mediated therapeutic effects. Immunofluorescence showed that the increased SIRT1 expression increased FoxO1 deacetylation, and promoted its nuclear translocation.
CONCLUSION
BBR can mitigate FFA-induced steatosis in HepG2 cells by activating SIRT1-FoxO1-SREBP2 signal pathway. BBR may emerge as a potential drug candidate for treating nonalcoholic hepatic steatosis.
Berberine/pharmacology*
;
Cholesterol
;
Forkhead Box Protein O1/genetics*
;
Humans
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Sirtuin 1/genetics*
;
Sterol Regulatory Element Binding Proteins

Result Analysis
Print
Save
E-mail