1.Ching Shum Pills alleviates non-alcoholic fatty liver disease in mice by ameliorating lipid metabolism disorders.
Biyun LUO ; Xin YI ; Yijing CAI ; Shiqing ZHANG ; Peng WANG ; Tong LI ; Ken Kin Lam YUNG ; Pingzheng ZHOU
Journal of Southern Medical University 2025;45(9):1840-1849
OBJECTIVES:
To investigate the effect of Ching Shum Pills (CSP) for alleviating non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism.
METHODS:
In a mouse model of NAFLD, the therapeutic effect of CSP was evaluated by measuring serum glucose, lipid profiles (TC, TG, LDL-C, HDL-C), and hepatic function markers. Network pharmacology was employed to identify active compounds in CSP and their targets using TCMSP, HERB, SwissTargetPrediction, GeneCards, OMIM, and DisGeNET. Protein-protein interaction (PPI) networks, Gene Ontology (GO), and KEGG pathway analyses were conducted. Molecular docking (AutoDock Vina) was used to assess the compound-target binding affinities. Quantitative real-time PCR (qRT-PCR) was used to validate the mRNA expressions of the core genes in the liver tissue of the mouse models.
RESULTS:
In the mouse model of NAFLD, treatment with CSP significantly reduced body weight gain and serum TG levels of the mice, and high-dose CSP treatment resulted in obvious reduction of ALT levels and hepatic fat accumulation. Network pharmacology analysis identified quercetin and 2-monolinolenin as the key bioactives in CSP, which target TNF, AKT1, IL6, TP53, and ALB. Docking simulations suggested strong binding between the two core compounds and their target proteins. The results of qRT-PCR showed that high-fat diet induced significant downregulation of Tp53, Cpt1, and Ppara expressions in mice, which was effectively reversed by CSP treatment.
CONCLUSIONS
CSP can improve lipid metabolism disorders in NAFLD mice through a regulatory mechanism involving multiple targets and pathways to reduce liver fat accumulation and protect liver function. The key components in CSP such as quercetin and linolenic acid monoacylglycerol may participate in the regulation of such metabolic processes as fatty acid oxidation by targeting TP53.
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Lipid Metabolism/drug effects*
;
Molecular Docking Simulation
;
Disease Models, Animal
;
Liver/metabolism*
;
Male
;
Lipid Metabolism Disorders/drug therapy*
;
PPAR alpha/metabolism*
;
Mice, Inbred C57BL
;
Network Pharmacology
2.Therapeutic role of Prunella vulgaris L. polysaccharides in non-alcoholic steatohepatitis and gut dysbiosis.
Meng-Jie ZHU ; Yi-Jie SONG ; Pei-Li RAO ; Wen-Yi GU ; Yu XU ; Hong-Xi XU
Journal of Integrative Medicine 2025;23(3):297-308
OBJECTIVE:
Prunella vulgaris L. has long been used for liver protection according to traditional Chinese medicine theory and has been proven by modern pharmacological research to have multiple potential liver-protective effects. However, its effects on non-alcoholic steatohepatitis (NASH) are currently uncertain. Our study explores the effects of P. vulgaris polysaccharides on NASH and intestinal homeostasis.
METHODS:
An aqueous extract of the dried fruit spikes of P. vulgaris was precipitated in an 85% ethanol solution (PVE85) to extract crude polysaccharides from the herb. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) was administrated to male C57BL/6 mice to establish a NASH animal model. After 4 weeks, the PVE85 group was orally administered PVE85 (200 mg/[kg·d]), while the control group and CDAHFD group were orally administered vehicle for 6 weeks. Quantitative real-time polymerase chain reaction analysis, Western blotting, immunohistochemistry and other methods were used to assess the impact of PVE85 on the liver in mice with NASH. 16S rRNA gene amplicon analysis was employed to evaluate the gut microbiota abundance and diversity in each group to examine alterations at various taxonomic levels.
RESULTS:
PVE85 significantly reversed the course of NASH in mice. mRNA levels of inflammatory mediators associated with NASH and protein expression of hepatic nucleotide-binding leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) were significantly reduced after PVE85 treatment. Moreover, PVE85 attenuated the thickening and cross-linking of collagen fibres and inhibited the expression of fibrosis-related mRNAs in the livers of NASH mice. Intriguingly, PVE85 restored changes in the gut microbiota and improved intestinal barrier dysfunction induced by NASH by increasing the abundance of Actinobacteria and reducing the abundance of Proteobacteria at the phylum level. PVE85 had significant activity in reducing the relative abundance of Clostridiaceae at the family levels. PVE85 markedly enhanced the abundance of some beneficial micro-organisms at various taxonomic levels as well. Additionally, the physicochemical environment of the intestine was effectively improved, involving an increase in the density of intestinal villi, normalization of the intestinal pH, and improvement of intestinal permeability.
CONCLUSION
PVE85 can reduce hepatic lipid overaccumulation, inflammation, and fibrosis in an animal model of CDAHFD-induced NASH and improve the intestinal microbial composition and intestinal structure. Please cite this article as: Zhu MJ, Song YJ, Rao PL, Gu WY, Xu Y, Xu HX. Therapeutic role of Prunella vulgaris L. polysaccharides in non-alcoholic steatohepatitis and gut dysbiosis. J Integr Med. 2025; 2025; 23(3): 297-308.
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Male
;
Dysbiosis/drug therapy*
;
Mice, Inbred C57BL
;
Gastrointestinal Microbiome/drug effects*
;
Polysaccharides/therapeutic use*
;
Prunella/chemistry*
;
Mice
;
Liver/metabolism*
;
Plant Extracts/therapeutic use*
;
Disease Models, Animal
;
Diet, High-Fat
3.Exocarpium Citri Grandis formula granules alleviate fatty liver disease in Zebrafish by maintaining iron homeostasis and suppressing lipid peroxidation and ferroptosis.
Yuxue ZAHNG ; Jieying LAN ; Xinyi MA ; Qiong ZHOU ; Mengchen QIN ; Lei GAO
Journal of Southern Medical University 2024;44(12):2265-2275
OBJECTIVES:
To investigate the therapeutic effect of Exocarpium Citri Grandis formula granules (ECGFG) on fatty liver disease (FLD) in zebrafish and explore the underlying mechanism.
METHODS:
Nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD) models were established in zebrafish larvae at 3 days post fertilization (dpf), in which the treatment efficacy of 16, 32, or 64 μg/mL ECGFG was evaluated by examining zebrafish survival and liver pathologies and using whole-fish oil red O staining and RT-qPCR. The therapeutic mechanism of ECGFG for FLD was investigated using Prussian blue staining, DCFH-DA probe, MDA content detection, RT-qPCR assay and immunohistochemical staining for CAV1.
RESULTS:
In zebrafish models of NAFLD and ALD, treatment with ECGFG significantly reduced lipid accumulation and the expression levels of FASN, SREBP1, HMGCRA, TNF-α and IL-6, increased the expressions of Apoa1 and PPARα, and reduced iron deposition and the contents of MDA and ROS in the liver. In zebrafish models of NAFLD, treatment with ECGFG at the 3 doses significantly increased hepatic expressions of Tf, TfR, FPN and SLC7A11, and at the doses of 32 and 64 μg/mL, ECGFG obviously increased hepatic expression of GPX4. ALD fish models showed significantly increased hepatic expressions of Tf, TfR and FPN, which were effectively lowered by treatment with ECGFG at the 3 doses. ECGFG did not obviously affect the expression of SLC7A11, but its high dose (64 μg/mL) caused significant elevation of GPX4 expression. Both zebrafish models of NAFLD and ALD showed obviously increased CAV1 expression level in the liver, which was significantly reduced by treatment with 32 and 64 μg/mL ECGFG.
CONCLUSIONS
In zebrafish models of NAFLD and ALD, ECGFG can alleviate lipid accumulation and inflammatory response and lower the expression level of CAV1 to restore iron homeostasis and suppress lipid peroxidation and ferroptosis in the liver.
Animals
;
Zebrafish
;
Ferroptosis/drug effects*
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Iron/metabolism*
;
Disease Models, Animal
;
Lipid Peroxidation/drug effects*
;
Homeostasis
;
Fatty Liver/drug therapy*
;
Liver/metabolism*
;
Lipid Metabolism/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
5.Lipid-lowering effect of drug pair Scutellariae Radix-Coptidis Rhizoma based on lipomics.
Wang-Zhen-Zu LIU ; Xiao-Jing QIAN ; Jia-Qi ZHANG ; Kun LIANG ; Cheng HU ; Xin-Hong WANG
China Journal of Chinese Materia Medica 2023;48(24):6711-6720
This study investigated the mechanism of action of Scutellariae Radix-Coptidis Rhizoma(SR-CR) in intervening in non-alcoholic fatty liver disease(NAFLD) in rats based on lipidomics. Thirty-six SD rats were divided into a control group, a model group, SR-CR groups of different doses, and a simvastatin group, with six rats in each group. Rats in the control group were fed on a normal diet, while those in the remaining groups were fed on a high-lipid diet. After four weeks of feeding, drug treatment was carried out and rats were sacrificed after 12 weeks. Serum liver function and lipid indexes were detected using kits, and the pathomorphology of liver tissues was evaluated by hematoxylin-eosin(HE) staining and oil red O staining. Changes in lipid levels in rats were detected using the LC-MS technique. Differential lipid metabolites were screened by multivariate statistical analysis, and lipid metabolic pathways were plotted. The changes in lipid-related protein levels were further verified by Western blot. The results showed that compared with the control group, the model group showed increased levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c)(P<0.01), and decreased levels of γ-glutamyl transferase(γ-GT) and high-density lipoprotein cholesterol(HDL-c)(P<0.01), which were significantly recovered by the intervention of SR-CR. HE staining and oil red O staining showed that different doses of SR-CR could reverse the steatosis in the rat liver in a dose-dependent manner. After lipidomics analysis, there were significant differences in lipid metabolism between the model group and the control group, with 54 lipids significantly altered, mainly including glycerolipids, phosphatidylcholine, and sphingolipids. After administration, 44 differential lipids tended to normal levels, which indicated that SR-CR groups of different doses significantly improved the lipid metabolism level in NAFLD rats. Western blot showed that SR-CR significantly decreased TG-synthesis enzyme 1(DGAT1), recombinant lipin 1(LPIN1), fatty acid synthase(FASN), acetyl-CoA carboxylase 1(ACC1), and increased the phosphorylation level of ACC1. These changes significantly decreased the synthesis of TG and increased the rate of its decomposition, which enhanced the level of lipid metabolism in the body and finally achieved the lipid-lowering effect. SR-CR can improve NAFLD by inhibiting the synthesis of fatty acids and TG.
Rats
;
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Scutellaria baicalensis
;
Drugs, Chinese Herbal/therapeutic use*
;
Pharmaceutical Preparations
;
Rats, Sprague-Dawley
;
Liver
;
Triglycerides/metabolism*
;
Cholesterol
;
Diet, High-Fat
;
Azo Compounds
6.Lycium barbarum Polysaccharides Promotes Mitochondrial Biogenesis and Energy Balance in a NAFLD Cell Model.
Yan-Nan ZHANG ; Yi-Qiong GUO ; Yan-Na FAN ; Xiu-Juan TAO ; Qing-Han GAO ; Jian-Jun YANG
Chinese journal of integrative medicine 2022;28(11):975-982
OBJECTIVE:
To explore the protective effect and underlying mechanism of Lycium barbarum polysaccharides (LBP) in a non-alcoholic fatty liver disease (NAFLD) cell model.
METHODS:
Normal human hepatocyte LO2 cells were treated with 1 mmol/L free fatty acids (FFA) mixture for 24 h to induce NAFLD cell model. Cells were divided into 5 groups, including control, model, low-, medium- and high dose LBP (30,100 and 300 µg/mL) groups. The monosaccharide components of LBP were analyzed with high performance liquid chromatography. Effects of LBP on cell viability and intracellular lipid accumulation were assessed by cell counting Kit-8 assay and oil red O staining, respectively. Triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), adenosine triphosphate (ATP) and oxidative stress indicators were evaluated. Energy balance and mitochondrial biogenesis related mRNA and proteins were determined by quantitative real-time polymerase chain reaction and Western blot, respectively.
RESULTS:
Heteropolysaccharides with mannose and glucose are the main components of LBP. LBP treatment significantly decreased intracellular lipid accumulation as well as TG, ALT, AST and malondialdehyde levels (P<0.05 or P<0.01), increased the levels of superoxide dismutase, phospholipid hydroperoxide glutathione peroxidase, catalase, and ATP in NAFLD cell model (P<0.05). Meanwhile, the expression of uncoupling protein 2 was down-regulated and peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor 1/mitochondrial transcription factor A pathway was up-regulated (P<0.05).
CONCLUSION
LBP promotes mitochondrial biogenesis and improves energy balance in NAFLD cell model.
Humans
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Lycium/metabolism*
;
Catalase/metabolism*
;
Organelle Biogenesis
;
Alanine Transaminase
;
Uncoupling Protein 2
;
Fatty Acids, Nonesterified
;
Mannose
;
Nuclear Respiratory Factor 1/metabolism*
;
PPAR gamma/metabolism*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Drugs, Chinese Herbal/pharmacology*
;
Malondialdehyde/metabolism*
;
Superoxide Dismutase/metabolism*
;
Polysaccharides/pharmacology*
;
Triglycerides
;
RNA, Messenger
;
Aspartate Aminotransferases
;
Glucose
;
Adenosine Triphosphate
7.Lingguizhugan Decoction, a Chinese herbal formula, improves insulin resistance in overweight/obese subjects with non-alcoholic fatty liver disease: a translational approach.
Liang DAI ; Jingjuan XU ; Baocheng LIU ; Yanqi DANG ; Ruirui WANG ; Lijie ZHUANG ; Dong LI ; Lulu JIAO ; Jianying WANG ; Lei ZHANG ; Linda L D ZHONG ; Wenjun ZHOU ; Guang JI
Frontiers of Medicine 2022;16(5):745-759
Lingguizhugan Decoction (LGZG) has been investigated in basic studies, with satisfactory effects on insulin resistance in non-alcoholic fatty liver disease (NAFLD). This translational approach aimed to explore the effect and underlying mechanism of LGZG in clinical setting. A randomized, double-blinded, placebo-controlled trial was performed. A total of 243 eligible participants with NAFLD were equally allocated to receive LGZG (two groups: standard dose and low dose) or placebo for 12 weeks on the basis of lifestyle modifications. The primary efficacy variable was homeostasis model assessment of insulin resistance (HOMA-IR). Analyses were performed in two populations in accordance with body mass index (BMI; overweight/obese, BMI ⩾ 24 kg/m2; lean, BMI < 24 kg/m2). For overweight/obese participants, low-dose LGZG significantly decreased their HOMA-IR level compared with placebo (-0.19 (1.47) versus 0.08 (1.99), P = 0.038). For lean subjects, neither dose of LGZG showed a superior effect compared with placebo. Methylated DNA immunoprecipitation sequencing and real-time qPCR found that the DNA N6-methyladenine modification levels of protein phosphatase 1 regulatory subunit 3A (PPP1R3A) and autophagy related 3 (ATG3) significantly increased after LGZG intervention in overweight/obese population. Low-dose LGZG effectively improved insulin resistance in overweight/obese subjects with NAFLD. The underlying mechanism may be related to the regulation of DNA N6-methyladenine modification of PPP1R3A and ATG3. Lean subjects may not be a targeted population for LGZG.
Humans
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Overweight/drug therapy*
;
Insulin Resistance
;
Obesity/drug therapy*
;
China
;
DNA/therapeutic use*
8.Mechanism study of the protective effects of selective cyclooxygenase-2 enzyme inhibitors on the liver of rats with type 2 diabetes mellitus combined with nonalcoholic steatohepatitis via Rho/ROCK pathway.
Chinese Journal of Hepatology 2022;30(1):74-80
Objective: To investigate whether the selective cyclooxygenase-2 enzyme inhibitors celecoxib has protective effect on the liver of rats with type 2 diabetes mellitus (T2DM) combined with nonalcoholic steatohepatitis (NASH) via inhibiting the expression of Rho/ROCK pathway. Methods: Forty male SD rats were randomly divided into four groups: type 2 diabetes mellitus combined with nonalcoholic steatohepatitis (T2DM-NASH) group, T2DM-NASH + celecoxib group, control group, and control+celecoxib group. The T2DM-NASH and T2DM-NASH + celecoxib groups were fed with high-sugar and fat diet, and the control group and control + celecoxib group were fed with basal diet (25 kJ/kg). Four weeks later, streptozotocin (STZ, 30 mg/kg) was intraperitoneally injected into the NASH group and T2DM-NASH + celecoxib group to induce T2DM model, and the control group and control + celecoxib group were intraperitoneally injected with isovolumic citric acid-sodium citrate buffer. Four weeks after STZ injection, the T2DM-NASH + celecoxib group and the control + celecoxib group were gavaged with celecoxib (10 mg·kg·d) dissolved in normal saline for 4 weeks, and the remaining two groups of rats were gavaged with isovolumic normal saline for 4 weeks. Animals were sacrificed at the end of the 12- weeks, and the liver tissue was collected. Liver pathological changes were observed by HE staining. The expressions of RhoA, RhoA, ROCK1 and ROCK2 proteins in liver were detected by immunohistochemistry and western blot. The expressional condition of RhoA, ROCK1 and ROCK2 mRNA in liver were detected by real-time quantitative PCR. The differences were compared between protein and mRNA expression among the groups by analysis of variance and t-test. Results: Compared with the control group and the control + celecoxib group, the liver tissue of the T2DM-NASH group and the T2DM-NASH + celecoxib group had severe steatosis, and there was partial inflammatory cell infiltration under the light microscope. The expression levels of RhoA, ROCK1 and ROCK2 protein and mRNA were significantly increased (P < 0.05) in each liver tissue, while liver steatosis was reduced to certain extent in T2DM-NASH + celecoxib group than T2DM-NASH group, and the expression levels of RhoA, ROCK1 and ROCK2 protein and mRNA were decreased in each liver tissue of T2DM-NASH group (P < 0.05). Conclusion: The selective cyclooxygenase-2 enzyme inhibitors celecoxib has a protective effect on the liver of rats with T2DM-NASH, and its effect may be achieved by inhibiting the expression of Rho/ROCK pathway.
Animals
;
Cyclooxygenase 2/therapeutic use*
;
Cyclooxygenase 2 Inhibitors/therapeutic use*
;
Diabetes Mellitus, Type 2/drug therapy*
;
Liver
;
Male
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
9.Exploring the effects of entecavir treatment on the degree of liver fibrosis in patients with non-alcoholic fatty liver combined with chronic hepatitis B in Tibet region.
Qing Ping WEN ; Hua QIAN ; Sang BA ; Mao Jin LU ; Deji SILANG ; Li SHI
Chinese Journal of Hepatology 2022;30(3):304-308
Objective: To explore the efficacy of entecavir antiviral therapy on the degree of liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) combined with chronic hepatitis B (CHB) in Tibet region. Methods: HBeAg-positive CHB patients who were treated with entecavir in the outpatient and inpatient Department of Infectious Diseases of the Tibet Autonomous Region people's Hospital between January 2018 to December 2019 were retrospectively analyzed. Among the 140 subjects with CHB, 95 cases were CHB alone, and the other 45 cases were diagnosed as CHB combined with NAFLD by ultrasound. All patients were given entecavir 0.5 mg orally once daily on an empty stomach for 48 weeks. HBeAg negative conversion rate, blood glucose, blood lipid, liver function and the degree of liver fibrosis were compared between the two groups at the 12th, 24th and 48th weeks of treatment to evaluate the virological response. SPSS 19.0 statistical software was used to process the data. Measurement data were expressed as mean ± standard deviation (x¯±s). Descriptive statistical analysis was used for t-test, and the categorical variables were expressed as percentage (%) and χ2 test. A p-value < 0.05 was considered as statistically significant. Results: After 48 weeks of treatment, the HBeAg and HBV DNA negative conversion rate were significantly better in patients with CHB alone (group B) than CHB combined with NAFLD (group A), that is to say, HBeAg negative conversion rate in group A and B patients were 28.90% and 40%, respectively, and group B was better than group A. HBV DNA negative conversion rate was significantly elevated in group B (83.2%) than group A (64.4%), with statistical significance (P<0.05), and the difference between the both groups was statistically significant. Alanine aminotransferase level was significantly decreased in patients with CHB alone than patients with CHB combined with NAFLD. Aspartate aminotransferase/platelet ratio index was significantly decreased after treatment than before treatment in both group of patients, and the depletion was more pronounced in CHB alone group. Liver stiffness values were significantly decreased in patients with CHB combined with NAFLD than CHB alone group. Moreover, liver stiffness values was higher in group A than group B before treatment under the influence of fat attenuation factors, and the differences before treatment and after treatment were 3.50±4.66 and 2.05±2.53, respectively; however, group B was not affected by fat attenuation factors, so LSM value reduction in group A was more obvious, and the differences were statistically significant. There was no statistically significant difference in blood glucose and blood lipids levels before and after treatment between the two groups. Conclusion: NAFLD has a certain effect on antiviral therapy and liver fibrosis in patients with CHB, i.e., the effect of antiviral therapy in patients with CHB alone is better than patients with CHB combined with NAFLD. Patients with CHB combined with NAFLD when treated with antiviral therapy had a significantly greater degree of liver stiffness reduction than patients with CHB alone. Therefore, it is necessary to actively intervene the risk factors associated with NAFLD according to the actual situation of different individuals to improve clinical efficacy of antiviral therapy.
Antiviral Agents/therapeutic use*
;
DNA, Viral
;
Guanine/analogs & derivatives*
;
Hepatitis B e Antigens
;
Hepatitis B, Chronic/drug therapy*
;
Humans
;
Liver Cirrhosis/complications*
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Retrospective Studies
;
Tibet
;
Treatment Outcome
10.Mechanism of Triclosan in the Treatment of Nonalcoholic Fatty Liver Disease Based on Network Pharmacology.
Chao ZUO ; Dong-Lei SUN ; Tian-He ZHAO ; Jing-Jing WANG ; Zun-Zhen ZHANG
Acta Academiae Medicinae Sinicae 2022;44(2):253-261
Objective To explore the potential targets of triclosan in the treatment of nonalcoholic fatty liver disease(NAFLD) and to provide new clues for the future research on the application of triclosan. Methods The targets of triclosan and NAFLD were obtained via network pharmacology.The protein-protein interaction network was constructed with the common targets shared by triclosan and NAFLD.The affinity of triclosan to targets was verified through molecular docking.Gene ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were carried out to analyze the key targets and the potential mechanism of action.NAFLD model was established by feeding male C57BL/6J mice with high-fat diet for 12 weeks.The mice were randomly assigned into a model group and a triclosan group [400 mg/(kg·d),gavage once a day for 8 weeks].The hematoxylin-eosin(HE) staining was used for observation of the pathological changes and oil red O staining for observation of fat deposition in mouse liver.Western blotting was employed to detect the protein level of peroxisome proliferator-activated receptor alpha(PPARα) in the liver tissue. Results Triclosan and NAFLD had 34 common targets,19 of which may be the potential targets for the treatment,including albumin(ALB),PPARα,mitogen-activated protein kinase 8(MAPK8),and fatty acid synthase.Molecular docking predicted that ALB,PPARα,and MAPK8 had good binding ability to triclosan.KEGG pathway enrichment showcased that the targets were mainly enriched in peroxisome proliferator-activated receptor signaling pathway,in which ALB and MAPK8 were not involved.Triclosan alleviated the balloon-like change and lipid droplet vacuole,decreased the lipid droplet area,and up-regulated the expression level of PPARα in mouse liver tissue. Conclusion PPARα is a key target of triclosan in the treatment of NAFLD,which may be involved in fatty acid oxidation through the peroxisome proliferator activated receptor signaling pathway.
Animals
;
Liver/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Molecular Docking Simulation
;
Network Pharmacology
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
PPAR alpha/therapeutic use*
;
Triclosan/therapeutic use*

Result Analysis
Print
Save
E-mail