1.Biological function of Nogo-B receptor.
Ying ZHU ; Li-Qun ZHANG ; Jian-Dong LI
Acta Physiologica Sinica 2022;74(2):301-308
Nogo-B receptor (NgBR) is a specific receptor of Nogo-B, a member of reticulon 4 protein family. It is widely expressed in many tissues and mainly located in cell membrane and endoplasmic reticulum. Previous studies have revealed that NgBR is involved in a variety of physiological and pathophysiological processes, such as dolichol synthesis, lipid metabolism, cholesterol trafficking, insulin resistance, vascular remodeling and angiogenesis, tumorigenesis and nervous system diseases. Further studies on the molecular characteristics and biological function of NgBR might be of great significance to understand its role in diverse diseases and provide possible clinical strategies for the treatment of diseases.
Carrier Proteins/metabolism*
;
Endoplasmic Reticulum/metabolism*
;
Lipid Metabolism
;
Nogo Proteins/metabolism*
;
Receptors, Cell Surface/metabolism*
2.Effects of Jisuikang on Nogo-NgR gene expression in spinal cord rats with injury.
Wu-Lin YOU ; Ya-Feng ZHANG ; Jian-Feng CHEN ; Heng YIN ; Jun-Feng YANG ; Jian-Wei WANG
China Journal of Orthopaedics and Traumatology 2015;28(3):235-239
OBJECTIVETo study the effects of Jisuikang (Chinese characters) on Nogo-NgR gene expression, and to explore the protective effects and mechanism of Jisuikang (Chinese characters) on spinal cord injury in rats.
METHODSOne hundred eighty female rats were randomly assigned to 6 groups(30 rats per group). Sham group: T10 lamina was resected only and spinal cord was untreated. Model group: spine cord injury (SCI) was created with a modified impinger of Allen's by impacting on the T10 spinal cord. Prednisolone group: Prednisolone (0.06 g/kg) was given by intragastric administration at a time interval of 24 hours after operation. The Jisuikang (Chinese characters) high, moderate and low dose groups: Jisuikang (Chinese characters) was supplied with different dose (50 g/kg, 25 g/kg, 12.5 g/kg) by intragastric administration in rats after operation,for the first time at 30 min after surgery. Animals were killed 3, 7, 14 days after surgery. The expression levels of Nogo-A and NgR were observed by Western Blot and Real-time PCR.
RESULTSThe expression of Nogo-A and NgR was at the basic level at all time points in sham group. Compared with model group, the protein expression levels of Nogo-A and NgR in sham, prednisolone, Jisuikang (Chinese characters) moderate dose groups were statistically significant at all time points (P < 0.05). No difference was found in Jisuikang (Chinese characters) high and low dose groups (P > 0.05). Three days after surgery, the mRNA levels of Nogo-A and NgR in treatment group were significantly lower than that in model group (P < 0.01); 7 days after surgery,Nogo-A and NgR mRNA expression were dramatically upregulated and peaked; 14 days after operation, the expression was decreased, but still significantly higher than that in other treatment groups (P < 0.01). Prednisolone and Jisuikang (Chinese characters) moderate dose groups showed the most significant effects among all groups,but there was no statistically significant difference between two groups (P > 0.05).
CONCLUSIONThe decoction Jisuikang (Chinese characters) can promote the nerve cell regeneration by regulating Nogo-A and NgR gene expression, activating Nogo- NgR signaling pathways after acute spinal cord injury.
Animals ; Female ; GPI-Linked Proteins ; analysis ; genetics ; physiology ; Medicine, Chinese Traditional ; Myelin Proteins ; analysis ; genetics ; physiology ; Nerve Regeneration ; drug effects ; Nogo Proteins ; Nogo Receptor 1 ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface ; analysis ; genetics ; physiology ; Signal Transduction ; drug effects ; Spinal Cord Injuries ; drug therapy ; metabolism
3.Effect of electric acupuncture on the expression of NgR in the cerebral cortex, the medulla oblongata, and the spinal cord of hypertensive rats after cerebral infarction.
Feng TAN ; Jie CHEN ; Yan-Gui LIANG ; Yan-Ping LI ; Xue-Wen WANG ; Di MENG ; Nan-Fang CHENG
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(3):334-341
OBJECTIVETo observe the effect of electric acupuncture (EA) on the Nogo receptors (NgR) protein expression in the cerebral cortex, the medulla oblongata, and the spinal cord of cerebral ischemia-reperfusion (I/R) stroke-prone renovascular hypertensive rats (RHRSP) with middle cerebral artery occlusion (MCAO) at different time points, and to investigate its possible mechanisms for remote-organ injury of acute cerebral infarction (ACI).
METHODSThe RHRSP model was duplicated in male SPF grade SD rats. Then the MCAO model was prepared by a thread stringing method. Rats were divided into the hypertension group,the sham-operation group, the MCAO group, the EA group, and the sham-acupoint group by random number table method, 60 in each group. Rats in the MCAO group only received MCAO reperfusion treatment. Those in the sham-operation group only received surgical trauma. Baihui (DU20) and Dazhui (DU14) were needled in the EA group, once daily for a total of 28 days.The needles were acupunctured at the skin one cun distant from Baihui (DU20) and Dazhui (DU14) and then the same EA treatment was performed in the sham-acupoint group. At day 1, 7, 14, 28 after treatment, six rats were executed from each group, and their right cortex and medulla oblongata, and the left spinal cord were isolated. The infarct volume was detected by Nissl's staining method. The NgR expression was detect by Western blot.
RESULTS(1) In the cortex area: compared with the hypertension group,the NgR expression increased in the MCAO group at day 1,7,14,and 28 after MCAO (P < 0.05). Compared with the MCAO group, the NgR expression of the EA group and the sham-acupoint group were equivalent at 1 day af ter MCAO (P > 0.05). At day 7, 14,and 28 after MCAO, the NgR expression decreased in the EA group (P < 0.05), it was quite similar to that in the sham-acupoint group (P > 0.05). (2) In the medulla oblongata area: compared with the hypertension group, the NgR expression was equivalent in the sham-operation group. the MCAO group,the EA group, and the sham-acupoint group at 1 day after MCAO (P > 0.05). At day 7.14, and 28 after MCAO, the NgR expression increased in the MCAO group (P < 0.05). Compared with the MCAO group,the NgR expression decreased in the EA group at day 7, 14, and 28 after MCAO (P < 0.05), whereas it was similar in the sham-acupoint group (P > 0.05). (3) In the spinal cord area: compared with the hypertension group, the NgR expression was equivalent in the sham-operation group, the MCAO group,the EA group, and the sham-acupoint group at day 1 and 7 after MCAO (P > 0.05). At day 14 and 28 after MCAO, the NgR expression increased in the MCAO group (P < 0.05). Compared with the MCAO group, the NgR expression decreased in the EA group at day 14 and 28 after MCAO (P < 0.05), whereas it was equivalent in the sham-acupoint group (P > 0.05).
CONCLUSIONSIncreased NgR expression in the cerebral cortex, the medulla oblongata, and the spinal cord of cerebral infarct rats was an important reason for involving remote-organ injury of ACI. The protective effect of EA on hypertensive I/R cerebral injury rats might be closely related to down-regulating central nervous system myelin growth inhibition mediated factors Nogo-A receptor NgR protein expression.
Animals ; Cerebral Infarction ; metabolism ; therapy ; Disease Models, Animal ; Electroacupuncture ; GPI-Linked Proteins ; metabolism ; Hypertension, Renal ; metabolism ; therapy ; Male ; Medulla Oblongata ; metabolism ; Myelin Proteins ; metabolism ; Nogo Receptor 1 ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface ; metabolism ; Spinal Cord ; metabolism
4.Silenced NgR gene expression by RNA interference to promote rats facial nerve regeneration in vitro.
Yong SHI ; Liang ZHOU ; Jie TIAN ; Yang WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(10):728-730
OBJECTIVE:
To suppress NgR gene expression in neural stem cells and observe differentiation of neural stem cells in vitro after interfered which provide nutritional support for the facial nerve repair in vivo.
METHOD:
PCR amplification, restriction endonuclease digestion, T4DNA ligase connections were used to connected NgR with rector pGCsi, and constructed recombinant vector (NgR shRNA). Lipofectamine 2000 were used to transfect the NSC. The expression of NgR was examined by Western Blot. The proportion of neural stem cells transformed into neurons after transfection was tested by Immunocytochemistry. Neural stem cells were planted in PLGA tubes after transfected, and were scanned by electron microscopy.
RESULT:
NgR shRNA plasmid was constructed and infected neural stem cells successfully. Western Blot showed that the expression of NgR decreased in neural stem cells after interference. Immunocytochemistry showed that the rate of the neural stem cells transformed into neurons after interfered was significantly higher (P < 0.01).
CONCLUSION
Neural stem cells were transformed into neurons after NgR shRNA plasmid infected neural stem cells, which promoted axonal regeneration more effectively and provided a efficient and stable gene platform for facial nerve repair.
Animals
;
Cell Differentiation
;
Cells, Cultured
;
Facial Nerve
;
surgery
;
GPI-Linked Proteins
;
genetics
;
metabolism
;
Myelin Proteins
;
genetics
;
metabolism
;
Neural Stem Cells
;
cytology
;
metabolism
;
Nogo Receptor 1
;
RNA Interference
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cell Surface
;
genetics
;
metabolism
5.Effects of electroacupuncture on the ultrastructure and the Nogo-A expressions in the cerebral cortex in rats with cerebral ischemia-reperfusion.
Yan-Qui LIANG ; Feng TAN ; Jie CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(2):209-213
OBJECTIVETo observe the effects of electroacupuncture (EA) on the expressions of Nogo-A and the ultrastructure in the cerebral cortex at different time points after the cerebral ischemia-reperfusion in rats.
METHODSOne hundred and thirty male Sprague Dawley (SD) rats were randomly divided into the EA group (n = 30), the sham-EA group (n = 30), the model group (n = 30), the sham-operation group (n = 30), and the blank group (n = 10). The modified ZeaLonga method was used to prepare the left middle cerebral artery occlusion (MCAO) model in the first three groups. After the operation Baihui (DU20) and Dazhui (DU14) were daily needled in the EA group. One inch beside Baihui (DU20) and Dazhui (DU14) were daily needled in the sham-EA group. Rats in the model group were only treated with MCAO ischemia/reperfusion. Rats in the sham-operation group only received surgical wound. No treatment was given to rats in the blank group. The ultrastructures of ischemic cells and the intervention of the Nogo-A expressions were observed using the immunohistochemical staining and the transmission electron microscope 1, 7, and 28 days after EA.
RESULTS(1) In the EA group, the damage of ultrastructures of neurons, gliocytes, and blood brain barrier in the ischemic region was alleviated when compared with that of the sham-EA group and the model group. (2) On the 1st, 7th and 28th day after the cerebral ischemia-reperfusion, the expressions of Nogo-A in the ischemic cortex in the EA group was lower when compared with those in the sham-EA group and the model group at the corresponding time points, showing significant difference (P < 0.05). But there was no statistical difference between the sham-EA group and the model group at the same time point (P > 0.05).
CONCLUSIONThe mechanism of EA for protecting cerebral ischemia/reperfusion might be closely associated with alleviating the damage on the ultrastructures of brain cells, and down-regulating the expressions of Nogo-A.
Acupuncture Points ; Animals ; Brain Ischemia ; metabolism ; pathology ; therapy ; Cerebral Cortex ; metabolism ; ultrastructure ; Electroacupuncture ; Male ; Myelin Proteins ; metabolism ; Nogo Proteins ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; metabolism ; pathology ; therapy
6.Inhibition of Nogo expression to promote repair after spinal cord injury.
Hong-hui SUN ; Feng GAO ; Bin LIU ; Hai-tao YU ; Ning KONG ; Guo-min LIU
Chinese Medical Journal 2012;125(22):4044-4048
BACKGROUNDOne of the reasons for poor neuroregeneration after central nervous system injury is the presence of inhibitory factors such as Nogo. Here, we tested the inhibition of Nogo by RNA interference both in vitro and in vivo, using recombinant adenovirus-mediated transfection of short hairpin RNAs, to explore a new method of treatment for spinal cord injury.
METHODSWe designed and cloned two Nogo-specific short hairpin RNAs and an unrelated short hairpin RNA, packaged the clones into adenovirus, and amplified the recombinant virus in 293 cells. We then tested the inhibition of Nogo expression both in vitro in adenovirus-transfected oligodendrocytes and in vivo in spinal cord tissue from adenovirus-transfected spinal cord injury model rats. We tested Nogo expression at the mRNA level by reverse-transcription PCR and at the protein level by Western blotting and immunohistochemistry.
RESULTSIn vitro, the two specific Nogo short hairpin RNAs decreased Nogo mRNA expression by 51% and 49%, respectively, compared with Nogo expression in cells transfected with the unrelated control small hairpin RNA (P < 0.005). Similarly, Nogo protein expression decreased by 50% and 48%, respectively (P < 0.005). In vivo, in spinal cord injury model rats, the two specific Nogo short hairpin RNAs decreased Nogo mRNA expression by 45% and 40%, respectively, compared with Nogo expression in spinal cord injury model rats transfected with the unrelated control short hairpin RNA (P < 0.005). The Nogo protein level was similarly decreased.
CONCLUSIONSWe were successful in specifically downregulating Nogo at the mRNA and protein levels by adenovirus-mediated delivery of short hairpin RNAs, both in vitro and in vivo. This confirms the effectiveness of RNA interference for the inhibition of Nogo gene expression and the efficiency of using adenovirus for delivery. Thus gene therapy may be an effective treatment for spinal cord injury.
Adenoviridae ; genetics ; Animals ; Blotting, Western ; Humans ; Immunohistochemistry ; Myelin Proteins ; genetics ; metabolism ; Nogo Proteins ; RNA Interference ; RNA, Small Interfering ; genetics ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Injuries ; therapy
7.Research on the mechanism of Zuogui Pill and Yougui Pill in promoting axonal regeneration in model rats of autoimmune encephalomyelitis.
Lei WANG ; Hui ZHAO ; Yong-ping FAN ; Hai-yang GONG ; Ming LI ; Fang QI ; Yan LIU
Chinese journal of integrative medicine 2010;16(2):167-172
OBJECTIVETo study the molecular mechanism of Zuogui Pill (ZGP) and Yougui Pill (YGP) on axonal regeneration in rats with experimental autoimmune encephalomyelitis (EAE).
METHODSEAE rat model was established by bilateral rear pedes subcutaneous injection of antigen made by mixing myelin basic protein (MBP) and complete Freud's adjuvant (CFA) in the volume ratio of 1:1. The pathological changes of axonal injury and regeneration in the brain and the spinal cord were observed on the 14th (the acute stage) and the 28th day (the remission stage) after modeling, with hematoxylin-eosin (HE) staining, silver stain, and immunohistochemical staining. The rats treated with prednisone acetate were taken as controls.
RESULTSObservation under the light microscope with HE staining showed a sleeve-like change in rats' cerebrospinal parenchyma with inflammatory cell infiltration around the small vessels and neuronic denaturation, while silver staining showed excessive tumefaction and abscission of axon, and immunohistochemical analysis showed decreasing of nerve growth factor (NGF) expression at the acute stage of EAE, which was even more remarkable at the remission stage, showing significant difference as compared with the normal control (P<0.05). And the expressions of Nogo A, an axon growth inhibitor, and its receptor (Nogo-66 receptor, Ng R) were significantly higher than those in the normal control at the acute stage (P<0.01). However, after the intervention of ZGP and YGP, the pathological changes and axon damage in rats' brain and spinal cord were much more alleviated, and the NGF expression was significantly higher than that in the model group at the acute stage (P<0.05). The expression of NGF was even stronger during the remission stage, and a better effect was shown by YGP. As for Nogo A and Ng R expressions, they were significantly lower than those in the model group at the acute stage (P<0.05), but a better effect was shown by ZGP.
CONCLUSIONSZGP and YGP can prevent axonal injury and promote the axonal regeneration in rats of EAE, and the possible mechanism is to increase the expression of NGF and reduce the expression of Nogo A and its receptor. However, some differences are observed between the two Chinese preparations in their acting times and points, which provides a certain basis for revealing the modern connotation of the Chinese medicine theory on tonifying Shen ()-yin and Shen-yang.
Animals ; Axons ; drug effects ; metabolism ; pathology ; physiology ; Brain ; drug effects ; metabolism ; pathology ; Disease Models, Animal ; Drug Evaluation, Preclinical ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; metabolism ; pathology ; GPI-Linked Proteins ; Male ; Myelin Proteins ; metabolism ; Nerve Growth Factor ; metabolism ; Nerve Regeneration ; drug effects ; Nogo Proteins ; Nogo Receptor 1 ; Rats ; Rats, Inbred Lew ; Receptors, Cell Surface ; Receptors, Peptide ; metabolism ; Research ; Signal Transduction ; drug effects ; Tablets
8.Expression of Nogo receptor in brain and neuroprotective effect of NEP1-40 on hypoxic ischemic brain damage in newborn rats.
Wei-wei ZHU ; Hong-yang ZHAO ; Tian-lian WEN ; Ai-li GUO ; Mei-rong BI
Chinese Journal of Pediatrics 2010;48(2):138-142
OBJECTIVEThe hypoxic-ischemic encephalopathy caused by asphyxia in peripartum is a serious disease in newborn infants, with a high disability and mortality rate. Lack of regenerative ability in central nervous system after injury is considered as the fundamental cause. However, in recent years many studies have revealed that there are myelin-associated neurite growth inhibitory factors that exert inhibiting effect through the Nogo receptor (NgR). This study aimed to investigate the expression level of NgR and the possible neuroprotective effect of NEP1-40 in newborn rats with hypoxic ischemic brain damage (HIBD).
METHODEighty healthy Wistar rats aged 7 days were randomly divided into 4 groups; 8 in control group, 24 in HIBD model group, 24 in GM-1 group and 24 in NEP1-40 group. The rats of the control group and HIBD group were injected with normal saline (0.25 ml/kg) intraperitoneally, while those in NEP1-40 group and GM-1 group with NEP1-40 12.5 microg/d, GM-1 10 mg/(kg.d) for continuous 3 days of 72-hour group or 7 days of 168-hour group, respectively. In situ hybridization was adopted for detecting the expression of NgR in the brain of the rats at the time point of 24 hours, 72 hours and 7 days. Meanwhile histopathological changes of neurons and axon were detected by transmission electron microscopy (TEM). The SPSS statistical software package for Windows, version 10.0, was used to run Chi-square tests and least significance difference (LSD-t) on the data presented, and P value of less than 0.05 was regarded as statistically significant.
RESULTThe expression level of Nogo-A receptor in the control group was higher than that of the other groups at different time point (t value was 5.48, 6.11, 6.96, 8.24, 5.99 and 5.34, respectively, and all P values were less than 0.05). There were no significant differences in Nogo-A receptor level among the HIBD group, the GM-1 group and the NEP1-40 at 24 hours (t was 1.48, 2.76 and 1.29, respectively, and all P > 0.05), while the expression of Nogo-A receptor of NEP1-40 at 72 hours and 7 days was lower than that of the HIBD group and the GM-1 group at the same time point, respectively (all P < 0.05). Repair of neurons in damaged brain to some extent was found after GM-1 treatment and satisfactory repair of neurons and axon regeneration was obtained with NEP1-40 administration as shown by TEM.
CONCLUSIONHypoxic ischemic brain damage can down-regulate the expression of Nogo-A receptor in the central nervous system. NEP1-40 contributes to the regeneration of axon and repair of brain damage, thus exerts neuroprotective effect.
Animals ; Animals, Newborn ; Brain ; drug effects ; metabolism ; pathology ; GPI-Linked Proteins ; Hypoxia-Ischemia, Brain ; metabolism ; pathology ; Myelin Proteins ; pharmacology ; Nogo Receptor 1 ; Peptide Fragments ; pharmacology ; Rats ; Rats, Wistar ; Receptors, Cell Surface ; Receptors, Peptide ; metabolism
10.NgR expression in oligodendrocyte precursor cells and its changes after oxygen & glucose deprivation in neonatal rats.
Jun TANG ; Yu-Jia YAO ; Lin ZHONG
Chinese Journal of Contemporary Pediatrics 2007;9(5):445-448
OBJECTIVEThis study examined the NgR expression in oligodendrocyte precursor cells (OLPs) and its changes after oxygen & glucose deprivation (OGD) in order to explore the role of NgR expression in the regeneration of OLPs after OGD in neonatal rats.
METHODSThe OLPs from 2-day-old neonatal rats were separated by improved separation and purification through agitation and then cultured in chemically defined medium. OLPs OGD model was prepared using the medium consisting of Na2S2O4 and Earle's fluid in vitro. Immunofluorescence assay was applied to identify the OLPs with its specific antibodies such as A2B5, O4 and O1. Western blot was used to detect the NgR expression in OLPs 10 and 30 minutes after OGD. The livability rate of cells was detected by MTT.
RESULTSNgR expression was found in both the cell body and the prominence of purified OLPs. NgR expression in OLPs increased significantly 10 and 30 minutes after OGD compared with that in OLPs without OGD (controls, P < 0.05). MTT showed that the livability rate of OLPs at 30 minutes following OGD was significantly lower than that of controls (65.97+/-3.69% vs 97.17+/-6.88%, P < 0.05).
CONCLUSIONSNgR is expressed in both the cell body and the prominence of OLPs. NgR expression increases while cell livability decreases following OGD, suggesting that NgR may play a role in the inhibition of regeneration of OLPs.
Animals ; Animals, Newborn ; Blotting, Western ; Cell Survival ; Cells, Cultured ; Fluorescent Antibody Technique ; GPI-Linked Proteins ; Glucose ; deficiency ; Hypoxia ; metabolism ; Myelin Proteins ; Nogo Receptor 1 ; Oligodendroglia ; chemistry ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface ; Receptors, Peptide ; analysis ; physiology ; Stem Cells ; chemistry

Result Analysis
Print
Save
E-mail