1.Can greenspace modify the combined effects of multiple air pollutants on pulmonary tuberculosis treatment outcomes? An empirical study conducted in Zhejiang Province, China.
Bo XIE ; Maolin WU ; Zhe PANG ; Bin CHEN
Environmental Health and Preventive Medicine 2025;30():31-31
BACKGROUND:
Evidence on the combined effects of air pollutants and greenspace exposure on pulmonary tuberculosis (PTB) treatment is limited, particularly in developing countries with high levels of air pollution.
OBJECTIVE:
We aimed to examine the individual and combined effects of long-term exposure to air pollutants on PTB treatment outcomes while also investigating the potential modifying effect of greenspace.
METHODS:
This population-based study included 82,784 PTB cases notified in Zhejiang Province, China, from 2015 to 2019. The 24-month average concentrations of particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) before PTB diagnosis were estimated using a dataset derived from satellite-based machine learning models and monitoring stations. Greenspace exposure was assessed using the annual China Land Cover Dataset. We conducted analyses using time-varying Cox proportional hazards models and cumulative risk indices.
RESULTS:
In individual effect models, each 10 µg/m3 increase in PM2.5, NO2, O3, and SO2 concentrations was associated with hazard ratios for PTB treatment success of 0.95 (95% confidence interval (CI): 0.93-0.97), 0.92 (95% CI: 0.91-0.94), 0.98 (95% CI: 0.97-0.99), and 1.52 (95% CI: 1.49-1.56), respectively. In combined effect models, long-term exposure to the combination of air pollutants was negatively associated with PTB treatment success, with a joint hazard ratio (JHR) of 0.79 (95% CI: 0.63-0.96). Among the pollutants examined, O3 contributed the most to the increased risks, followed by PM2.5 and NO2. Additionally, areas with moderate levels of greenspace showed a reduced risk (JHR = 0.81, 95% CI: 0.62-0.98) compared with the estimate from the third quantile model (JHR = 0.68, 95% CI: 0.52-0.83).
CONCLUSIONS
Combined air pollutants significantly impede successful PTB treatment outcomes, with O3 and PM2.5 accounting for nearly 75% of this detrimental effect. Moderate levels of greenspace can mitigate the adverse effects associated with combined air pollutants, leading to improved treatment success for patients with PTB.
Humans
;
China/epidemiology*
;
Air Pollutants/analysis*
;
Tuberculosis, Pulmonary/drug therapy*
;
Particulate Matter/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Environmental Exposure/analysis*
;
Ozone/adverse effects*
;
Adult
;
Sulfur Dioxide/adverse effects*
;
Treatment Outcome
;
Air Pollution/adverse effects*
;
Aged
;
Nitrogen Dioxide/adverse effects*
;
Young Adult
;
Adolescent
2.Air pollution exposure associated with decline rates in skeletal muscle mass and grip strength and increase rate in body fat in elderly: a 5-year follow-up study.
Chi-Hsien CHEN ; Li-Ying HUANG ; Kang-Yun LEE ; Chih-Da WU ; Shih-Chun PAN ; Yue Leon GUO
Environmental Health and Preventive Medicine 2025;30():56-56
BACKGROUND:
The effect of air pollution on annual change rates in grip strength and body composition in the elderly is unknown.
OBJECTIVES:
This study evaluated the effects of long-term exposure to ambient air pollution on change rates of grip strength and body composition in the elderly.
METHODS:
In the period 2016-2020, grip strength and body composition were assessed and measured 1-2 times per year in 395 elderly participants living in the Taipei basin. Exposure to ambient fine particulate matters (PM2.5), nitric dioxide (NO2), and ozone (O3) from 2015 to 2019 was estimated using a hybrid Kriging/Land-use regression model. In addition, long-term exposure to carbon monoxide (CO) was estimated using an ordinary Kriging approach. Associations between air pollution exposures and annual changes in health outcomes were analyzed using linear mixed-effects models.
RESULTS:
An inter-quartile range (4.1 µg/m3) increase in long-term exposure to PM2.5 was associated with a faster decline rate in grip strength (-0.16 kg per year) and skeletal muscle mass (-0.14 kg per year), but an increase in body fat mass (0.21 kg per year). The effect of PM2.5 remained robust after adjustment for NO2, O3 and CO exposure. In subgroup analysis, the PM2.5-related decline rate in grip strength was greater in participants with older age (>70 years) or higher protein intake, whereas in skeletal muscle mass, the decline rate was more pronounced in participants having a lower frequency of moderate or strenuous exercise. The PM2.5-related increase rate in body fat mass was higher in participants having a lower frequency of strenuous exercise or soybean intake.
CONCLUSIONS
Among the elderly, long-term exposure to ambient PM2.5 is associated with a faster decline in grip strength and skeletal muscle mass, and an increase in body fat mass. Susceptibility to PM2.5 may be influenced by age, physical activity, and dietary protein intake; however, these modifying effects vary across different health outcomes, and further research is needed to clarify their mechanisms and consistency.
Humans
;
Hand Strength
;
Aged
;
Male
;
Female
;
Environmental Exposure/adverse effects*
;
Follow-Up Studies
;
Taiwan
;
Air Pollution/adverse effects*
;
Particulate Matter/adverse effects*
;
Muscle, Skeletal/drug effects*
;
Air Pollutants/adverse effects*
;
Ozone/adverse effects*
;
Aged, 80 and over
;
Adipose Tissue/drug effects*
;
Body Composition/drug effects*
;
Nitrogen Dioxide/adverse effects*
3.Non-linear association between long-term air pollution exposure and risk of metabolic dysfunction-associated steatotic liver disease.
Wei-Chun CHENG ; Pei-Yi WONG ; Chih-Da WU ; Pin-Nan CHENG ; Pei-Chen LEE ; Chung-Yi LI
Environmental Health and Preventive Medicine 2024;29():7-7
BACKGROUND:
Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) has become a global epidemic, and air pollution has been identified as a potential risk factor. This study aims to investigate the non-linear relationship between ambient air pollution and MASLD prevalence.
METHOD:
In this cross-sectional study, participants undergoing health checkups were assessed for three-year average air pollution exposure. MASLD diagnosis required hepatic steatosis with at least 1 out of 5 cardiometabolic criteria. A stepwise approach combining data visualization and regression modeling was used to determine the most appropriate link function between each of the six air pollutants and MASLD. A covariate-adjusted six-pollutant model was constructed accordingly.
RESULTS:
A total of 131,592 participants were included, with 40.6% met the criteria of MASLD. "Threshold link function," "interaction link function," and "restricted cubic spline (RCS) link functions" best-fitted associations between MASLD and PM2.5, PM10/CO, and O3 /SO2/NO2, respectively. In the six-pollutant model, significant positive associations were observed when pollutant concentrations were over: 34.64 µg/m3 for PM2.5, 57.93 µg/m3 for PM10, 56 µg/m3 for O3, below 643.6 µg/m3 for CO, and within 33 and 48 µg/m3 for NO2. The six-pollutant model using these best-fitted link functions demonstrated superior model fitting compared to exposure-categorized model or linear link function model assuming proportionality of odds.
CONCLUSION
Non-linear associations were found between air pollutants and MASLD prevalence. PM2.5, PM10, O3, CO, and NO2 exhibited positive associations with MASLD in specific concentration ranges, highlighting the need to consider non-linear relationships in assessing the impact of air pollution on MASLD.
Humans
;
Nitrogen Dioxide
;
Cross-Sectional Studies
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Liver Diseases
;
Environmental Exposure/analysis*
4.Causal links between long-term exposure to NO2 and the risk of cardiovascular hospitalization.
Yu Qin ZHANG ; Ao LUO ; Shi Rui CHEN ; Xu JU ; Xiu Yuan CHEN ; Wang Jian ZHANG ; Yuan Tao HAO
Chinese Journal of Epidemiology 2023;44(6):885-890
Objective: To determine the causal association between long-term Nitrogen dioxide (NO2) exposure and the risk of cardiovascular hospitalization. Methods: Based on a sub-cohort of a community-based prospective cohort study, a total of 36 271 participants were recruited from 35 communities randomly selected in Guangzhou in 2015. The annual average exposure of NO2, demographic characteristics, lifestyle factors, and information on the causes of hospitalization was collected. We applied marginal structural Cox models to investigate the effect of NO2 on cardiovascular hospitalization. Demographic and behavioral factors also stratified results. Results: The mean age of participants in the present study was (50.9±17.8) years, and the cardiovascular admission rate was 8.7%, with 203 822 person-years of follow-up. The annual mean NO2 concentration was 48.7 μg/m3 during 2015-2020. For each 10 μg/m3 increase in NO2 concentrations, the HRs (95%CIs) of total cardiovascular hospitalization, cardiovascular hospitalization, and cerebrovascular hospitalization were 1.33 (1.16-1.52), 1.36 (1.16-1.60) and 1.25 (1.00-1.55), respectively. Participants who were never married/married, with secondary education, high exercise frequency, or non-smokers/current smokers may be more susceptible than their counterparts. Conclusion: Long-term exposure to NO2 significantly increased hospitalization risk for cardiovascular disease.
Humans
;
Adult
;
Middle Aged
;
Aged
;
Nitrogen Dioxide
;
Prospective Studies
;
Cardiovascular Diseases/epidemiology*
;
Causality
;
Hospitalization
5.Association of greenness, nitrogen dioxide with the prevalence of hypertension among the elderly over 65 years old in China.
Jia Ming YE ; Jin Hui ZHOU ; Jun WANG ; Li hong YE ; Chen Feng LI ; Bing WU ; Li QI ; Chen CHEN ; Jia CUI ; Yi Qi QIU ; Si Xin LIU ; Fang Yu LI ; Yu Fei LUO ; Yue Bin LYU ; Lin YE ; Xiao Ming SHI
Chinese Journal of Preventive Medicine 2023;57(5):641-648
Objective: To investigate the association of mixed exposure to greenness and nitrogen dioxide(NO2) and hypertension among the older adults aged 65 years and over in China. Methods: The study subjects were from the Chinese Longitudinal Healthy Longevity Survey from 2017 to 2018. A total of 15 423 older adults aged 65 years and over meeting the criteria were finally included in the study. A questionnaire survey was used to collect information on demographic characteristics, lifestyle habits and self-reported prevalence of hypertension. Blood pressure values were obtained through physical examination. The level of normalized difference vegetation index(NDVI) was measured by the Medium-resolution Imaging Spectral Radiator(MODIS) of the National Aeronautics and Space Administration(NASA). The concentration of NO2 was from China's surface air pollutant data set. Meteorological data was from NASA MERRA-2. The exposure to NDVI and NO2 for each study subject was calculated based on the area within a 1 km radius around their residence. The association between mixed exposure of NDVI and NO2 as well as their interaction and hypertension in older adults was analyzed by using the multivariate logistic regression model. The restrictive cubic spline(RCS) function was used to explore the exposure-response relationship between greenness and NO2 and the risk of hypertension in study subjects. Results: The mean age of 15 423 older adults were (85.6±11.6). Women accounted for 56.3%(8 685/15 423) and 55.6%(8 578/15 423) lived in urban areas. The mean time of residence was (60.9±28.5) years. 59.8% of participants were with hypertension. The mean NDVI level was 0.41±0.13, and the mean NO2 concentration was (32.18±10.36) μg/cm3. The results of multivariate logistic regression analysis showed that NDVI was inversely and linearly associated with the hypertension in older adults, with the OR(95%CI) value of 0.959(0.928-0.992). Compared with the T1 group of NDVI, the risk of hypertension was lower in the T3 group, with the OR(95%CI) value of 0.852(0.769-0.944), and the trend test was statistically significant(P<0.05). Compared with the T1 group of NO2, the risk of hypertension was higher in the T2 and T3 groups, with OR(95%CI) values of 1.160(1.055-1.275) and 1.244(1.111-1.393), and the trend test was statistically significant (P<0.05). The result of the RCS showed that NDVI was inversely and linearly associated with hypertension in older adults. NO2 was nonlinearly associated with hypertension in older adults. The interaction analysis showed that NDVI and NO2 had a negative multiplicative interaction on the risk of hypertension, with OR(95%CI) value of 0.995(0.992-0.997). Conclusion: Exposure to greenness and NO2 are associated with hypertension in older adults.
Aged
;
Humans
;
Female
;
Nitrogen Dioxide
;
Air Pollution
;
Prevalence
;
Hypertension/epidemiology*
;
China/epidemiology*
;
Particulate Matter/analysis*
6.Study on the association between air pollution and respiratory disease of primary school students in Chongqing City.
Yun Yun WU ; Zi Hao WANG ; Qi ZHANG ; Qun Ying LI
Chinese Journal of Preventive Medicine 2023;57(9):1447-1451
To analyze the association between exposure to air pollution and respiratory disease of primary school students in Chongqing City. Eight districts and counties were randomly selected based on the air pollution situation in Chongqing City. In each selected district and county, one primary school was randomly selected. A questionnaire survey was conducted on all primary school students in Grades 3-5 by the end of 2019. Air quality data from the nearest environmental monitoring sites were collected. A logistic regression model was used to analyze the impact of the living environment, lifestyle and air pollution on the respiratory disease of surveyed students. This study included 5 918 primary school students, with a prevalence rate of respiratory disease of 21.54%. The prevalence rates of boys and girls were 23.38% and 19.59%, respectively. The average Air quality index (AQI) of the surveyed school was 67, and the rates of exceeding standards of PM10, PM2.5, NO2 and O3 were 1.16%, 6.92%, 0.99% and 5.65%, respectively. The level of SO2 and CO did not exceed the standard. After adjusting for relevant factors, logistic regression analysis showed that primary school students in areas with high exposure to air pollution (OR=2.52), using air pollution related-chemicals at home (OR=1.47), passive smoking (OR=1.27), and keeping pets at home (OR=1.18) had a higher risk of respiratory disease (all P<0.05). In addition, the average annual values of AQI (OR=1.18), PM10 (OR=1.20), PM2.5 (OR=1.35), and NO2 (OR=1.11) increased the risk of respiratory diseases in primary school students (all P<0.05). In conclusion, the respiratory disease of primary school students in Chongqing City is related to the living environment, behavior habits and ambient air quality. The increased exposure concentration of PM10, PM2.5 and NO2 in air pollutants can lead to an increased risk of respiratory disease among primary school students.
Female
;
Humans
;
Male
;
Air Pollution/adverse effects*
;
Nitrogen Dioxide
;
Particulate Matter
;
Respiratory Tract Diseases/epidemiology*
;
Schools
;
Students
;
Child
7.Study on revision of standard limits for nitrogen dioxide in "Standards for indoor air quality(GB/T 18883-2022)" in China.
Qing Li ZHANG ; Ren Jie CHEN ; Hai Dong KAN
Chinese Journal of Preventive Medicine 2023;57(11):1766-1769
Nitrogen dioxide (NO2) is an important indoor air pollutant, with both outdoor and indoor sources contributing to indoor NO2 exposure levels. Considering the association of high NO2 exposure with adverse health effects, the Standards for indoor air quality (GB/T 18883-2022) have been revised to further restrict indoor NO2 limit values. The 1-h average concentration limit value for NO2 has been reduced from 0.24 mg/m3 to 200 μg/m3.This study analyzed the technical contents related to the determination of the limits of indoor NO2 in Standards for Indoor Air Quality (GB/T 18883-2022), including source, exposure level, health effects, and the process and evidence basis for determining the limit value. It also proposed prospects for the direction for the implementation of the indoor NO2 standard.
Humans
;
Air Pollution, Indoor/adverse effects*
;
Nitrogen Dioxide
;
Air Pollutants/analysis*
;
China
;
Air Pollution/adverse effects*
8.Study on the association between air pollution and respiratory disease of primary school students in Chongqing City.
Yun Yun WU ; Zi Hao WANG ; Qi ZHANG ; Qun Ying LI
Chinese Journal of Preventive Medicine 2023;57(9):1447-1451
To analyze the association between exposure to air pollution and respiratory disease of primary school students in Chongqing City. Eight districts and counties were randomly selected based on the air pollution situation in Chongqing City. In each selected district and county, one primary school was randomly selected. A questionnaire survey was conducted on all primary school students in Grades 3-5 by the end of 2019. Air quality data from the nearest environmental monitoring sites were collected. A logistic regression model was used to analyze the impact of the living environment, lifestyle and air pollution on the respiratory disease of surveyed students. This study included 5 918 primary school students, with a prevalence rate of respiratory disease of 21.54%. The prevalence rates of boys and girls were 23.38% and 19.59%, respectively. The average Air quality index (AQI) of the surveyed school was 67, and the rates of exceeding standards of PM10, PM2.5, NO2 and O3 were 1.16%, 6.92%, 0.99% and 5.65%, respectively. The level of SO2 and CO did not exceed the standard. After adjusting for relevant factors, logistic regression analysis showed that primary school students in areas with high exposure to air pollution (OR=2.52), using air pollution related-chemicals at home (OR=1.47), passive smoking (OR=1.27), and keeping pets at home (OR=1.18) had a higher risk of respiratory disease (all P<0.05). In addition, the average annual values of AQI (OR=1.18), PM10 (OR=1.20), PM2.5 (OR=1.35), and NO2 (OR=1.11) increased the risk of respiratory diseases in primary school students (all P<0.05). In conclusion, the respiratory disease of primary school students in Chongqing City is related to the living environment, behavior habits and ambient air quality. The increased exposure concentration of PM10, PM2.5 and NO2 in air pollutants can lead to an increased risk of respiratory disease among primary school students.
Female
;
Humans
;
Male
;
Air Pollution/adverse effects*
;
Nitrogen Dioxide
;
Particulate Matter
;
Respiratory Tract Diseases/epidemiology*
;
Schools
;
Students
;
Child
9.Study on revision of standard limits for nitrogen dioxide in "Standards for indoor air quality(GB/T 18883-2022)" in China.
Qing Li ZHANG ; Ren Jie CHEN ; Hai Dong KAN
Chinese Journal of Preventive Medicine 2023;57(11):1766-1769
Nitrogen dioxide (NO2) is an important indoor air pollutant, with both outdoor and indoor sources contributing to indoor NO2 exposure levels. Considering the association of high NO2 exposure with adverse health effects, the Standards for indoor air quality (GB/T 18883-2022) have been revised to further restrict indoor NO2 limit values. The 1-h average concentration limit value for NO2 has been reduced from 0.24 mg/m3 to 200 μg/m3.This study analyzed the technical contents related to the determination of the limits of indoor NO2 in Standards for Indoor Air Quality (GB/T 18883-2022), including source, exposure level, health effects, and the process and evidence basis for determining the limit value. It also proposed prospects for the direction for the implementation of the indoor NO2 standard.
Humans
;
Air Pollution, Indoor/adverse effects*
;
Nitrogen Dioxide
;
Air Pollutants/analysis*
;
China
;
Air Pollution/adverse effects*
10.Effect of modification of antihypertensive medications on the association of nitrogen dioxide long-term exposure and chronic kidney disease.
Lin MA ; Jing Yi WU ; Shuang Cheng LI ; Peng Fei LI ; Lu Xia ZHANG
Journal of Peking University(Health Sciences) 2022;54(5):1047-1055
OBJECTIVE:
To investigate the potential effect of modification of antihypertensive medications on the association of nitrogen dioxide (NO2) long-term exposure and chronic kidney disease (CKD).
METHODS:
Data of the national representative sample of adult population from the China National Survey of Chronic Kidney Disease (2007-2010) were included in the analyses, and exposure data of NO2 were collected and matched. Generalized mixed-effects models were used to analyze the associations between NO2 and CKD, stratified by the presence of hypertension and taking antihypertensive medications. The stratified exposure-response curves of NO2 and CKD were fitted using the natural spine smoothing function. The modifying effects of antihypertensive medications on the association and the exposure-response curve of NO2 and CKD were analyzed.
RESULTS:
Data of 45 136 participants were included, with an average age of (49.5±15.3) years. The annual average exposure concentration of NO2 was (7.2±6.4) μg/m3. Altogether 6 517 (14.4%) participants were taking antihypertensive medications, and 4 833 (10.7%) participants were identified as having CKD. After adjustment for potential confounders, in the hypertension population not using antihypertensive medications, long-term exposure to NO2 was associated with a significant increase risk of CKD (OR: 1.38, 95%CI: 1.24-1.54, P < 0.001); while in the hypertension population using antihypertensive medications, no significant association between long-term exposure to NO2 and CKD (OR: 0.96, 95%CI: 0.86-1.07, P=0.431) was observed. The exposure-response curve of NO2 and CKD suggested that there was a non-linear trend in the association between NO2 and CKD. The antihypertension medications showed significant modifying effects both on the association and the exposure-response curve of NO2 and CKD (interaction P < 0.001).
CONCLUSION
The association between long-term exposure to NO2 and CKD was modified by antihypertensive medications. Taking antihypertensive medications may mitigate the effect of long-term exposure to NO2 on CKD.
Adult
;
Air Pollutants/analysis*
;
Air Pollution/analysis*
;
Antihypertensive Agents/adverse effects*
;
Environmental Exposure/analysis*
;
Humans
;
Hypertension/epidemiology*
;
Middle Aged
;
Nitrogen Dioxide/analysis*
;
Particulate Matter
;
Renal Insufficiency, Chronic/epidemiology*

Result Analysis
Print
Save
E-mail