1.Mechanism of Reactive Oxygen/Nitrogen Species in Liver Ischemia-Reperfusion Injury and Preventive Effect of Chinese Medicine.
Lei GAO ; Yun-Jia LI ; Jia-Min ZHAO ; Yu-Xin LIAO ; Meng-Chen QIN ; Jun-Jie LI ; Hao SHI ; Nai-Kei WONG ; Zhi-Ping LYU ; Jian-Gang SHEN
Chinese journal of integrative medicine 2025;31(5):462-473
Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.
Reperfusion Injury/drug therapy*
;
Reactive Oxygen Species/metabolism*
;
Reactive Nitrogen Species/metabolism*
;
Humans
;
Liver/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
2.Functional analysis of a nitrate-induced GARP transcription factor AhNIGT1.2 in peanut nodulation.
Xiaoliang LI ; Haitong HE ; Suqin HE ; Luyao WANG ; Wei ZHANG ; Zhaosheng KONG ; Lixiang WANG
Chinese Journal of Biotechnology 2025;41(2):657-669
Peanut, a major economic and oil crop known for the high protein and oil content, is extensively cultivated in China. Peanut plants have the ability to form nodules with rhizobia, where the nitrogenase converts atmospheric nitrogen into ammonia nitrogen that can be utilized by the plants. Analysis of nodule fixation is of positive significance for avoiding overapplication of chemical fertilizer and developing sustainable agriculture. In this study, AhNIGT1.2, a member of the NIGT family predominantly expressed in peanut nodules, was identified by bioinformatics analysis. Subsequent spatiotemporal expression analysis revealed that AhNIGT1.2 was highly expressed in nodules and showed significant responses to high nitrogen, low nitrogen, high phosphorus, low phosphorus, and rhizobia treatments. Histochemical staining indicated that the gene was primarily expressed in developing nodules and at the connection region between mature nodules and peanut roots. The fusion protein AhNIGT1.2-GFP was located in the nucleus of tobacco epidermal cells. The AhNIGT1.2-OE significantly increased the number of peanut nodules, while AhNIGT1.2-RNAi reduced the number of nodules, which suggested a positive regulatory role of AhNIGT1.2 in peanut nodulation. The AhNIGT1.2-OE in roots down-regulated the expression levels of NRT1.2, NRT2.4, NLP1, and NLP7, which indicated that AhNIGT1.2 influenced peanut nodulation by modulating nitrate transport and the expression of NLP genes. The transcriptome analysis of AhNIGT1.2-OE and control roots revealed that overexpressing AhNIGT1.2 significantly enriched the differentially expressed genes associated with nitrate response, nodulation factor pathway, enzymes for triterpene biosynthesis, and carotenoid biosynthesis. These findings suggest that AhNIGT1.2 play a key role in peanut nodulation by regulating nitrate transport and response and other related pathways. This study gives insights into the molecular mechanisms of nitrogen and phosphorus in regulating legume nodulation and nitrogen fixation, and sheds light on the development of legume crops that can efficiently fix nitrogen in high nitrogen environments.
Arachis/physiology*
;
Nitrates/metabolism*
;
Plant Proteins/physiology*
;
Transcription Factors/metabolism*
;
Plant Root Nodulation/physiology*
;
Gene Expression Regulation, Plant
;
Root Nodules, Plant/metabolism*
;
Nitrogen Fixation
3.Progress in microbial photoelectrotrophic denitrification.
Zhenjun TIAN ; Lieyu ZHANG ; Yangwei BAI ; Yimei WEI ; Yang BAI ; Zelin SHAN ; Yongkun YU
Chinese Journal of Biotechnology 2025;41(6):2324-2333
Microbial denitrification is a major pathway for nitrogen removal from water bodies. However, denitrification is often difficult to continue when there is a lack of microbially available organic matter in the water body to serve as electron donors. In recent years, studies have shown that some denitrifying bacteria can directly utilize photoelectrons generated by sunlight-excited semiconductor minerals or natural organic matter for denitrification without the need for bioavailable organic matter as electron donors. This process is defined as microbial photoelectrotrophic denitrification. The discovery of microbial photoelectrotrophic denitrification phenomenon reshapes the previous knowledge about the chemoheterotrophic mode of denitrifying bacteria and broadens the pathway of nitrogen removal by the new photoelectrotrophic metabolism, which is of great significance to our understanding and exploration of sunlight-driven nitrogen cycling process. In this paper, we comprehensively sort out the existing research reports in the field of microbial photoelectrotrophic denitrification, systematically summarize the principle and the current research progress of microbial photoelectrotrophic denitrification, deeply analyze the problems and challenges faced by this technology, and make an outlook on the future research directions and application prospects of this technology, providing a reference for the further research and application of this technology.
Denitrification/physiology*
;
Nitrogen/isolation & purification*
;
Bacteria/metabolism*
;
Sunlight
;
Phototrophic Processes
4.BnaNRT1.5s mediates nitrate transporter to regulate nitrogen use efficiency in Brassica napus.
Shilong CHEN ; Lei YAO ; Rumeng WANG ; Jian ZENG ; Jianghe LI ; Shiyao CUI ; Xu WANG ; Haixing SONG ; Zhenhua ZHANG ; Pan GONG
Chinese Journal of Biotechnology 2025;41(7):2954-2965
Improving the nitrogen use efficiency (NUE) of Brassica napus is of significant importance for achieving the national goal of zero growth in chemical fertilizer application and ensuring the green development of the rapeseed industry. This study aims to explore the effects of the nitrate transporter gene BnaNRT1.5s on the nitrogen transport and NUE of B. napus, providing excellent genetic resources for the development of nitrogen-efficient B. napus varieties. The spatiotemporal expression of BnaA05.NRT1.5 as a key nitrogen responsive gene was profiled by qRT-PCR at different growth stages and for different tissue samples of B. napus 'Westar'. Subcellular localization was employed to examine its expression pattern in the cells. Additionally, CRISPR/Cas9 was used to create BnaNRT1.5s knockout lines, which were subjected to hydroponic experiments under high nitrogen (12.0 mmol/L) and low nitrogen (0.3 mmol/L) conditions. After the seedlings were cultivated for 21 days, root and shoot samples were collected for weighing, nitrogen content determination, xylem sap nitrate content assessment, and calculation of total nitrogen and NUE. The B. napus nitrate transporter BnaA05.NRT1.5 was localized to the cell membrane. During the seedling and early bolting stages, BnaA05.NRT1.5 was predominantly expressed in roots, while it was highly expressed in old leaves and mature silique skin during the reproductive stage. Compared with the wild type, the mutant BnaNRT1.5s showed significant increases in the dry weight and total nitrogen of seedlings under both high and low nitrogen conditions. Under low nitrogen conditions, NUE in the roots of BnaNRT1.5s significantly improved. Notably, under both high and low nitrogen conditions, the nitrate content in the shoots of BnaNRT1.5s decreased significantly, while that in the roots increased significantly, resulting in a significantly decreased shoot-to-root nitrate content ratio. BnaNRT1.5s is involved in regulating the transport of nitrate from the roots to the shoots, and its mutation enhances nitrogen absorption and utilization in B. napus seedlings, promoting seedling growth. This study not only provides references for understanding the physiological and molecular mechanisms by which BnaNRT1.5s regulates NUE but also offers valuable genetic resources for improving NUE in B. napus.
Brassica napus/genetics*
;
Anion Transport Proteins/metabolism*
;
Nitrogen/metabolism*
;
Nitrate Transporters
;
Plant Proteins/metabolism*
;
Nitrates/metabolism*
;
Gene Expression Regulation, Plant
;
Biological Transport
5.Soil carbon and nitrogen dynamics affect bacterial and fungal communities and their interactions: a review.
Xinyuan LIU ; Yue LI ; Ziyan WEI ; Zhujun WANG
Chinese Journal of Biotechnology 2025;41(10):3701-3718
The escalating pressure from global population growth, climate change, and resource consumption is intensifying the burden on traditional agricultural production. Against this backdrop, soil degradation and pollution present increasingly severe challenges, creating a vicious cycle with rising food demands. Maintaining soil health and its ecosystem services has thus become a critical prerequisite for achieving sustainable agriculture in the future. This review explores the impacts of soil carbon (C) and nitrogen (N) dynamics on soil microbial communities and their interactions. Soil C and N are key determinants of microbial diversity and community structure, intrinsically linked to soil C/N cycling, crop productivity, and ecological balance. Environmental factors such as nitrogen fertilizer application, organic matter amendment application, litter decomposition, elevated CO2 concentrations, and nitrogen deposition significantly influence soil C and N dynamics. Changes in soil C and N content regulate microbial community dynamics and the synergistic, competitive, and antagonistic interactions among microorganisms. Meanwhile, microbial communities actively respond to alterations in soil C and N availability. The resulting shifts in microbial communities and their interactions subsequently regulate soil C/N cycling and ecosystem stability, ultimately influencing ecosystem functions. By elucidating the mechanisms underlying soil carbon-nitrogen-microbial interactions, this review significantly advances our understanding of soil ecosystem responses and feedback mechanisms in the context of global change, while also providing crucial practical guidance for enhancing soil fertility and promoting sustainable agricultural development through microbial regulation.
Soil Microbiology
;
Nitrogen/metabolism*
;
Carbon/metabolism*
;
Soil/chemistry*
;
Bacteria/growth & development*
;
Fungi/metabolism*
;
Ecosystem
;
Fertilizers
;
Agriculture
6.Research progress on nitrogen use efficiency of wheat.
Luokun RONG ; Rongbin ZHAO ; Ping LIN ; Lei WANG
Chinese Journal of Biotechnology 2025;41(10):3907-3917
Nitrogen use efficiency (NUE) is a pivotal indicator for achieving high wheat yields and sustainable resource utilization. This paper reviews recent research advances in the NUE of wheat, emphasizing genotypic variations, physiological mechanisms, molecular regulation, and agronomic management practices. Furthermore, this paper analyzes the critical regulatory nodes in nitrogen uptake, transport, assimilation, and redistribution, summarizes the current research bottlenecks, and makes an outlook on the future research directions. We then propose a strategy integrating emerging biotechnologies with precision agronomic management to enhance both wheat yields and NUE. This review aims to offer a theoretical framework for breeding nitrogen-efficient wheat cultivars and promoting the eco-friendly production of wheat.
Triticum/growth & development*
;
Nitrogen/metabolism*
;
Plant Breeding
7.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
8.Caspase-1/-11 participates in LPS-induced sepsis-associated acute kidney injury by cleaving GSDMD.
Bin ZHAI ; Li-Sha MA ; Rui-Qin SHEN ; Jian YU ; Yi-Nan TAO ; Ai-Ping XU ; De-Cui SHAO
Acta Physiologica Sinica 2023;75(1):10-16
The present study was aimed to investigate whether Gasdermin D (GSDMD)-mediated pyroptosis participated in lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (AKI), and to explore the role of caspase-1 and caspase-11 pyroptosis pathways in this process. The mice were divided into four groups: wild type (WT), WT-LPS, GSDMD knockout (KO) and KO-LPS. The sepsis-associated AKI was induced by intraperitoneal injection of LPS (40 mg/kg). Blood samples were taken to determine the concentration of creatinine and urea nitrogen. The pathological changes of renal tissue were observed via HE staining. Western blot was used to investigate the expression of pyroptosis-associated proteins. The results showed that the concentrations of serum creatinine and urea nitrogen in the WT-LPS group were significantly increased, compared with those in the WT group (P < 0.01); whereas serum creatinine and urea nitrogen in the KO-LPS group were significantly decreased, compared with those in the WT-LPS group (P < 0.01). HE staining results showed that LPS-induced renal tubular dilatation was mitigated in GSDMD KO mice. Western blot results showed that LPS up-regulated the protein expression levels of interleukin-1β (IL-1β), GSDMD and GSDMD-N in WT mice. GSDMD KO significantly down-regulated the protein levels of IL-1β, caspase-11, pro-caspase-1, caspase-1(p22) induced by LPS. These results suggest that GSDMD-mediated pyroptosis is involved in LPS-induced sepsis-associated AKI. Caspase-1 and caspase-11 may be involved in GSDMD cleavage.
Animals
;
Mice
;
Acute Kidney Injury
;
Caspase 1
;
Caspases/metabolism*
;
Creatinine
;
Lipopolysaccharides
;
Mice, Knockout
;
Nitrogen
;
Sepsis
;
Urea
;
Gasdermins/metabolism*
9.Identification, expression and DNA variation analysis of high affinity nitrate transporter NRT2/3 gene family in Sorghum bicolor.
Shanshan ZHAO ; Zhiqiang GUO ; Lixun ZHU ; Jiali FAN ; Bohui YANG ; Wenting CHAI ; Huiqiong SUN ; Fan FENG ; Yuexiu LIANG ; Chunlei ZOU ; Xiaodong JIANG ; Weijun ZHAO ; Jinhui LÜ ; Chunlai ZHANG
Chinese Journal of Biotechnology 2023;39(7):2743-2761
Nitrate is the main form of inorganic nitrogen that crop absorbs, and nitrate transporter 2 (NRT2) is a high affinity transporter using nitrate as a specific substrate. When the available nitrate is limited, the high affinity transport systems are activated and play an important role in the process of nitrate absorption and transport. Most NRT2 cannot transport nitrates alone and require the assistance of a helper protein belonging to nitrate assimilation related family (NAR2) to complete the absorption or transport of nitrates. Crop nitrogen utilization efficiency is affected by environmental conditions, and there are differences between varieties, so it is of great significance to develop varieties with high nitrogen utilization efficiency. Sorghum bicolor has high stress tolerance and is more efficient in soil nitrogen uptake and utilization. The S. bicolor genome database was scanned to systematically analyze the gene structure, chromosomal localization, physicochemical properties, secondary structure and transmembrane domain, signal peptide and subcellular localization, promoter region cis-acting elements, phylogenetic evolution, single nucleotide polymorphism (SNP) recognition and annotation, and selection pressure of the gene family members. Through bioinformatics analysis, 5 NRT2 gene members (designated as SbNRT2-1a, SbNRT2-1b, SbNRT2-2, SbNRT2-3, and SbNRT2-4) and 2 NAR2 gene members (designated as SbNRT3-1 and SbNRT3-2) were identified, the number of which was less than that of foxtail millet. SbNRT2/3 were distributed on 3 chromosomes, and could be divided into four subfamilies. The genetic structure of the same subfamilies was highly similar. The average value of SbNRT2/3 hydrophilicity was positive, indicating that they were all hydrophobic proteins, whereas α-helix and random coil accounted for more than 70% of the total secondary structure. Subcellular localization occurred on plasma membrane, where SbNRT2 proteins did not contain signal peptides, but SbNRT3 proteins contained signal peptides. Further analysis revealed that the number of transmembrane domains of the SbNRT2s family members was greater than 10, while that of the SbNRT3s were 2. There was a close collinearity between NRT2/3s of S. bicolor and Zea mays. Protein domains analysis showed the presence of MFS_1 and NAR2 protein domains, which supported executing high affinity nitrate transport. Phylogenetic tree analysis showed that SbNRT2/3 were more closely related to those of Z. mays and Setaria italic. Analysis of gene promoter cis-acting elements indicated that the promoter region of SbNRT2/3 had several plant hormones and stress response elements, which might respond to growth and environmental cues. Gene expression heat map showed that SbNRT2-3 and SbNRT3-1 were induced by nitrate in the root and stem, respectively, and SbNRT2-4 and SbNRT2-3 were induced by low nitrogen in the root and stem. Non-synonymous SNP variants were found in SbNRT2-4 and SbNRT2-1a. Selection pressure analysis showed that the SbNRT2/3 were subject to purification and selection during evolution. The expression of SbNRT2/3 gene and the effect of aphid infection were consistent with the expression analysis results of genes in different tissues, and SbNRT2-1b and SbNRT3-1 were significantly expressed in the roots of aphid lines 5-27sug, and the expression levels of SbNRT2-3, SbNRT2-4 and SbNRT3-2 were significantly reduced in sorghum aphid infested leaves. Overall, genome-wide identification, expression and DNA variation analysis of NRT2/3 gene family of Sorghum bicolor provided a basis for elucidating the high efficiency of sorghum in nitrogen utilization.
Nitrate Transporters
;
Nitrates/metabolism*
;
Sorghum/metabolism*
;
Anion Transport Proteins/metabolism*
;
Phylogeny
;
Protein Sorting Signals/genetics*
;
Nitrogen/metabolism*
;
DNA
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
10.Mechanism of trehalose-enhanced metabolism of heterotrophic nitrification-aerobic denitrification community under high-salt stress.
Lei GUO ; Pengying XIAO ; Longshan LI ; Shuang CHEN ; Gang YUAN
Chinese Journal of Biotechnology 2022;38(12):4536-4552
Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria are aerobic microorganisms that can remove nitrogen under high-salt conditions, but their performance in practical applications are not satisfactory. As a compatible solute, trehalose helps microorganisms to cope with high salt stress by participating in the regulation of cellular osmotic pressure, and plays an important role in promoting the nitrogen removal efficiency of microbial populations in the high-salt environment. We investigated the mechanism of exogenous-trehalose-enhanced metabolism of HN-AD community under high-salt stress by starting up a membrane aerobic biofilm reactor (MABR) to enrich HN-AD bacteria, and designed a C150 experimental group with 150 μmol/L trehalose addition and a C0 control group without trehalose. The reactor performance and the community structure showed that NH4+-N, total nitrogen (TN) and chemical oxygen demand (COD) removal efficiency were increased by 29.7%, 28.0% and 29.1%, respectively. The total relative abundance of salt-tolerant HN-AD bacteria (with Acinetobacter and Pseudofulvimonas as the dominant genus) in the C150 group reached 66.8%, an 18.2% increase compared with that of the C0 group. This demonstrated that trehalose addition promoted the enrichment of salt-tolerant HN-AD bacteria in the high-salt environment to enhance the nitrogen removal performance of the system. In-depth metabolomics analysis showed that the exogenous trehalose was utilized by microorganisms to improve proline synthesis to increase resistance to high-salt stress. By regulating the activity of cell proliferation signaling pathways (cGMP-PKG, PI3K-Akt), phospholipid metabolism pathway and aminoacyl-tRNA synthesis pathway, the abundances of phosphoethanolamine, which was one of the glycerophospholipid metabolites, and purine and pyrimidine were up-regulated to stimulate bacterial aggregation and cell proliferation to promote the growth of HN-AD bacteria in the high-salt environment. Meanwhile, the addition of trehalose accelerated the tricarboxylic acid (TCA) cycle, which might provide more electron donors and energy to the carbon and nitrogen metabolisms of HN-AD bacteria and promote the nitrogen removal performance of the system. These results may facilitate using HN-AD bacteria in the treatment of high-salt and high-nitrogen wastewater.
Nitrification
;
Denitrification
;
Trehalose
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Heterotrophic Processes
;
Salt Stress
;
Nitrogen/metabolism*
;
Aerobiosis
;
Bioreactors/microbiology*

Result Analysis
Print
Save
E-mail