1.Mechanism of Zhifuxin in prevention and treatment of vascular dementia in long-term hypoperfused rats.
Xiao-Qing LI ; Xue ZHOU ; Jiu-Qun ZHU ; Zheng-Huai TAN
China Journal of Chinese Materia Medica 2025;50(7):1900-1907
This paper aims to evaluate the pharmacodynamic effect and mechanism of Zhifuxin in the prevention and treatment of vascular dementia(VD), providing a theoretical basis for later development. Bilateral common carotid artery ligation in male Wistar rats was conducted to replicate the long-term hypoperfused VD model, and the drug was given to groups after one month. The rats were fed daily with nimodipine of 20 mg·kg~(-1), Zhifuxin of 50, 100, and 200 mg·kg~(-1), or the same volume of solvent for four weeks. 24 hours after the last dose, Morris water maze experiments were performed to detect the learning and memory abilities of rats. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the brain tissue of rats; the immunohistochemical method was used to detect the expression of muscarinic acetylcholine receptors M1 and M4 in rats and determine the content of acetyl choline(Ach), acetylcholin esterase(AchE), malondialdehyde(MDA), choline acetyl transferase(ChAT), and dimethyl arginine hydrolase 1(DDAH1) in the cerebral cortex of rats. Western blot was employed to detect protein expression of endothelial nitric oxide synthase(eNOS), caveolin-1, monoamine oxidase A(MAO-A), and monoamine oxidase B(MAO-B). RT-qPCR was utilized to detect mRNA expression of eNOS, caveolin-1, MAO-A, and MAO-B. The results showed that compared with the model group, the different doses of Zhifuxin were able to shorten the latency of VD rats in the water maze positioning navigation test, increase the number of crossing platforms in the space exploration test, and alleviate cone cell contracture in the hippocampus of VD rats. The expression of biochemical indicators related to the cholinergic system in the cerebral cortex: M1 and M4 receptors increased, as well as ChAT activity, and AchE activity significantly decreased. The protein and mRNA expression of indicators related to the eNOS/NO pathway: DDAH1 content, eNOS, and caveolin-1 increased, and that of indicators related to monoamine oxidase(MAO): MAO-A and MAO-B significantly decreased. The results show that Zhifuxin can improve cognition ability in long-term hypoperfused VD rats, and its mechanism of action may be related to its ability to modulate the cholinergic system and the eNOS/NO pathway and inhibit MAO expression.
Animals
;
Dementia, Vascular/metabolism*
;
Male
;
Rats, Wistar
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
;
Nitric Oxide Synthase Type III/genetics*
;
Acetylcholinesterase/metabolism*
;
Humans
;
Choline O-Acetyltransferase/genetics*
;
Disease Models, Animal
2.Effects of human umbilical cord-derived mesenchymal stem cell therapy for cavernous nerve injury-induced erectile dysfunction in the rat model.
Wei WANG ; Ying LIU ; Zi-Hao ZHOU ; Kun PANG ; Jing-Kai WANG ; Peng-Fei HUAN ; Jing-Ru LU ; Tao ZHU ; Zuo-Bin ZHU ; Cong-Hui HAN
Asian Journal of Andrology 2025;27(4):508-515
Stem cell treatment may enhance erectile dysfunction (ED) in individuals with cavernous nerve injury (CNI). Nevertheless, no investigations have directly ascertained the implications of varying amounts of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on ED. We compare the efficacy of three various doses of HUC-MSCs as a therapeutic strategy for ED. Sprague-Dawley rats (total = 175) were randomly allocated into five groups. A total of 35 rats underwent sham surgery and 140 rats endured bilateral CNI and were treated with vehicles or doses of HUC-MSCs (1 × 10 6 cells, 5 × 10 6 cells, and 1 × 10 7 cells in 0.1 ml, respectively). Penile tissues were harvested for histological analysis on 1 day, 3 days, 7 days, 14 days, 28 days, 60 days, and 90 days postsurgery. It was found that varying dosages of HUC-MSCs enhanced the erectile function of rats with bilateral CNI and ED. Moreover, there was no significant disparity in the effectiveness of various dosages of HUC-MSCs. However, the expression of endothelial markers (rat endothelial cell antigen-1 [RECA-1] and endothelial nitric oxide synthase [eNOS]), smooth muscle markers (alpha smooth muscle actin [α-SMA] and desmin), and neural markers (neurofilament [RECA-1] and neurogenic nitric oxide synthase [nNOS]) increased significantly with prolonged treatment time. Masson's staining demonstrated an increased in the smooth muscle cell (SMC)/collagen ratio. Significant changes were detected in the microstructures of various types of cells. In vivo imaging system (IVIS) analysis showed that at the 1 st day, the HUC-MSCs implanted moved to the site of damage. Additionally, the oxidative stress levels were dramatically reduced in the penises of rats administered with HUC-MSCs.
Male
;
Animals
;
Erectile Dysfunction/metabolism*
;
Rats, Sprague-Dawley
;
Mesenchymal Stem Cell Transplantation/methods*
;
Rats
;
Penis/pathology*
;
Humans
;
Disease Models, Animal
;
Umbilical Cord/cytology*
;
Peripheral Nerve Injuries/complications*
;
Mesenchymal Stem Cells
;
Nitric Oxide Synthase Type III/metabolism*
;
Actins/metabolism*
;
Nitric Oxide Synthase Type I/metabolism*
3.Endothelial Cell Integrin α6 Regulates Vascular Remodeling Through the PI3K/Akt-eNOS-VEGFA Axis After Stroke.
Bing-Qiao WANG ; Yang-Ying DUAN ; Mao CHEN ; Yu-Fan MA ; Ru CHEN ; Cheng HUANG ; Fei GAO ; Rui XU ; Chun-Mei DUAN
Neuroscience Bulletin 2025;41(9):1522-1536
The angiogenic response is essential for the repair of ischemic brain tissue. Integrin α6 (Itga6) expression has been shown to increase under hypoxic conditions and is expressed exclusively in vascular structures; however, its role in post-ischemic angiogenesis remains poorly understood. In this study, we demonstrate that mice with endothelial cell-specific knockout of Itga6 exhibit reduced neovascularization, reduced pericyte coverage on microvessels, and accelerated breakdown of microvascular integrity in the peri-infarct area. In vitro, endothelial cells with ITGA6 knockdown display reduced proliferation, migration, and tube-formation. Mechanistically, we demonstrated that ITGA6 regulates post-stroke angiogenesis through the PI3K/Akt-eNOS-VEGFA axis. Importantly, the specific overexpression of Itga6 in endothelial cells significantly enhanced neovascularization and enhanced the integrity of microvessels, leading to improved functional recovery. Our results suggest that endothelial cell Itga6 plays a crucial role in key steps of post-stroke angiogenesis, and may represent a promising therapeutic target for promoting recovery after stroke.
Animals
;
Nitric Oxide Synthase Type III/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Integrin alpha6/genetics*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Stroke/pathology*
;
Vascular Remodeling/physiology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Mice, Knockout
;
Signal Transduction/physiology*
;
Mice, Inbred C57BL
;
Male
;
Neovascularization, Physiologic/physiology*
4.Qiwei No.3 combined with sildenafil inhibits Rho kinase activity and increases AKT/eNOS expressions in the penile cavernosum of rats with diabetic erectile dysfunction.
Wei ZHAO ; Lin LI ; Li ZHANG ; Xiao-Qing ZHAO ; Dong-Xu LI ; Jing XIA
National Journal of Andrology 2024;30(12):1128-1134
OBJECTIVE:
To explore the effects of Qiwei No.3 combined with sildenafil on Rho kinase activity and AKT/eNOS pathways in the penile cavernous tissue of male rats with diabetic erectile dysfunction (DED).
METHODS:
We constructed a model of DED in 24 SD male rats by intraperitoneal injection of streptozotocin solution and injecting apomorphine into the neck after 8 weeks of feeding, equally randomized the model rats into a model control (MC), a sildenafil (S), a low-dose Qiwei No.3 combined with sildenafil (LQ+S) and a high-dose Qiwei No.3 combined with sildenafil (HQ+S) group, and took another 6 normal male rats as blank controls (BC). We treated intragastrically the animals in the BC and MC groups with normal saline, and those in the S, LQ+S and HQ+S groups with sildenafil (5 mg/kg/d), Qiwei No.3 (10 g/kg/d) + sildenafil (5mg/kg/d), and Qiwei No.3 (20g/kg/d) + sildenafil (5mg/kg/d), respectively. After 6 weeks of treatment, we recorded the number of penile erections of all the rats by injecting apomorphine into the neck, and measured the activity of Rho kinase and expressions of p-AKT and eNOS proteins in the corpus cavernosum by Western blot.
RESULTS:
Compared with the blank controls, all the DED model rats showed evidently elevated blood glucose and reduced body weight. The number of penile erections was significantly increased in the S, LQ+S and HQ+S groups in comparison with that in the model controls (P< 0.05), even higher in the HQ+S than in the S group (P< 0.05). The activity of Rho kinase in the penile cavernosum was significantly higher in the MC than in the BC group (P<0.05), but lower in the HQ+S than in the S group (P< 0.05). No statistically significant difference was observed in the expression level of the p-AKT protein in the penile cavernosum among the five groups of rats (P > 0.05). The expression of eNOS was remarkably up-regulated in the BC and HQ+S groups (P< 0.05) compared with that in the MC group, even more significantly in the HQ+S than in the LQ+S and S groups (P< 0.05).
CONCLUSION
The combination of high-dose "Qiwei No. 3" and sildenafil can improve erectile function in DED rats, which may be attributed to its effect of releasing more nitric oxide (NO) by inhibiting the activity of Rho kinase and up-regulating the expression of the e-NOS protein.
Animals
;
Male
;
Sildenafil Citrate
;
Rats
;
rho-Associated Kinases/antagonists & inhibitors*
;
Rats, Sprague-Dawley
;
Penis/drug effects*
;
Erectile Dysfunction/etiology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Diabetes Mellitus, Experimental/complications*
;
Drugs, Chinese Herbal/therapeutic use*
5.S-propargyl-cysteine delays the progression of atherosclerosis and increases eNOS phosphorylation in endothelial cells.
Zhi-Ming LI ; Ping LI ; Lei ZHU ; Yu-Wen ZHANG ; Yi-Chun ZHU ; He WANG ; Bo YU ; Ming-Jie WANG
Acta Physiologica Sinica 2023;75(3):317-327
The present study aimed to investigate the protective effect of S-propargyl-cysteine (SPRC) on atherosclerosis progression in mice. A mouse model of vulnerable atherosclerotic plaque was created in ApoE-/- mice by carotid artery tandem stenosis (TS) combined with a Western diet. Macrophotography, lipid profiles, and inflammatory markers were measured to evaluate the antiatherosclerotic effects of SPRC compared to atorvastatin as a control. Histopathological analysis was performed to assess the plaque stability. To explore the protective mechanism of SPRC, human umbilical vein endothelial cells (HUVECs) were cultured in vitro and challenged with oxidized low-density lipoprotein (ox-LDL). Cell viability was determined with a Cell Counting Kit-8 (CCK-8). Endothelial nitric oxide synthase (eNOS) phosphorylation and mRNA expression were detected by Western blot and RT-qPCR respectively. The results showed that the lesion area quantified by en face photographs of the aortic arch and carotid artery was significantly less, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were reduced, plaque collagen content was increased and matrix metalloproteinase-9 (MMP-9) was decreased in 80 mg/kg per day SPRC-treated mice compared with model mice. These findings support the role of SPRC in plaque stabilization. In vitro studies revealed that 100 μmol/L SPRC increased the cell viability and the phosphorylation level of eNOS after ox-LDL challenge. These results suggest that SPRC delays the progression of atherosclerosis and enhances plaque stability. The protective effect may be at least partially related to the increased phosphorylation of eNOS in endothelial cells.
Animals
;
Humans
;
Mice
;
Atherosclerosis
;
Cholesterol/metabolism*
;
Cysteine/pharmacology*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide Synthase Type III/metabolism*
;
Phosphorylation
;
Plaque, Atherosclerotic/pathology*
6.Phosphorylated PKM2 regulates endothelium-dependent vasodilation in diabetes.
Bin LU ; Lei TANG ; Le LI ; Xiaoyu ZHOU ; Yiping LENG ; Chengxuan QUAN
Journal of Central South University(Medical Sciences) 2023;48(5):663-670
OBJECTIVES:
Endothelium-dependent vasodilation dysfunction is the pathological basis of diabetic macroangiopathy. The utilization and adaptation of endothelial cells to high glucose determine the functional status of endothelial cells. Glycolysis pathway is the major energy source for endothelial cells. Abnormal glycolysis plays an important role in endothelium-dependent vasodilation dysfunction induced by high glucose. Pyruvate kinase isozyme type M2 (PKM2) is one of key enzymes in glycolysis pathway, phosphorylation of PKM2 can reduce the activity of pyruvate kinase and affect the glycolysis process of glucose. TEPP-46 can stabilize PKM2 in its tetramer form, reducing its dimer formation and phosphorylation. Using TEPP-46 as a tool drug to inhibit PKM2 phosphorylation, this study aims to explore the impact and potential mechanism of phosphorylated PKM2 (p-PKM2) on endothelial dependent vasodilation function in high glucose, and to provide a theoretical basis for finding new intervention targets for diabetic macroangiopathy.
METHODS:
The mice were divided into 3 groups: a wild-type (WT) group (a control group, C57BL/6 mice) and a db/db group (a diabetic group, db/db mice), which were treated with the sodium carboxymethyl cellulose solution (solvent) by gavage once a day, and a TEPP-46 group (a treatment group, db/db mice+TEPP-46), which was gavaged with TEPP-46 (30 mg/kg) and sodium carboxymethyl cellulose solution once a day. After 12 weeks of treatment, the levels of p-PKM2 and PKM2 protein in thoracic aortas, plasma nitric oxide (NO) level and endothelium-dependent vasodilation function of thoracic aortas were detected. High glucose (30 mmol/L) with or without TEPP-46 (10 μmol/L), mannitol incubating human umbilical vein endothelial cells (HUVECs) for 72 hours, respectively. The level of NO in supernatant, the content of NO in cells, and the levels of p-PKM2 and PKM2 protein were detected. Finally, the effect of TEPP-46 on endothelial nitric oxide synthase (eNOS) phosphorylation was detected at the cellular and animal levels.
RESULTS:
Compared with the control group, the levels of p-PKM2 in thoracic aortas of the diabetic group increased (P<0.05). The responsiveness of thoracic aortas in the diabetic group to acetylcholine (ACh) was 47% lower than that in the control group (P<0.05), and that in TEPP-46 treatment group was 28% higher than that in the diabetic group (P<0.05), while there was no statistically significant difference in the responsiveness of thoracic aortas to sodium nitroprusside (SNP). Compared with the control group, the plasma NO level of mice decreased in the diabetic group, while compared with the diabetic group, the phosphorylation of PKM2 in thoracic aortas decreased and the plasma NO level increased in the TEPP-46 group (both P<0.05). High glucose instead of mannitol induced the increase of PKM2 phosphorylation in HUVECs and reduced the level of NO in supernatant (both P<0.05). HUVECs incubated with TEPP-46 and high glucose reversed the reduction of NO production and secretion induced by high glucose while inhibiting PKM2 phosphorylation (both P<0.05). At the cellular and animal levels, TEPP-46 reversed the decrease of eNOS (ser1177) phosphorylation induced by high glucose (both P<0.05).
CONCLUSIONS
p-PKM2 may be involved in the process of endothelium-dependent vasodilation dysfunction in Type 2 diabetes by inhibiting p-eNOS (ser1177)/NO pathway.
Animals
;
Humans
;
Mice
;
Carboxymethylcellulose Sodium/pharmacology*
;
Diabetes Mellitus, Type 2/metabolism*
;
Endothelium, Vascular/metabolism*
;
Glucose/metabolism*
;
Human Umbilical Vein Endothelial Cells
;
Mice, Inbred C57BL
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Phosphorylation
;
Pyruvate Kinase/metabolism*
;
Vasodilation
7.Effects of 4'-O-methylochnaflavone on endothelial dysfunction induced by palmitic acid in rat cavernous endothelial cells.
Yang Yang GU ; Xiao Hui TAN ; Wen Peng SONG ; Dong FANG ; Wei Dong SONG ; Yi Ming YUAN ; Ning Han FENG ; Rui Li GUAN
Journal of Peking University(Health Sciences) 2022;54(4):599-604
OBJECTIVE:
To investigate the effect of biflavonoid 4'-O-methylochnaflavone (MF) on palmitic acid-induced endothelial dysfunction in rat cavernous endothelial cells (RCECs).
METHODS:
The isolated RCECs were commercially available and randomly divided into four groups: normal+BSA group (NC group), palmitic acid (PA) group, MF group, and icariside Ⅱ (ICA Ⅱ) group. The protein expression levels of protein kinase B (PKB/AKT) and endothelial nitric oxide synthase (eNOS) in each group were evaluated via Western blotting. The differences in the intracellular nitric oxide of RCECs treated by MF or ICA Ⅱ were detected by DAF-FM DA that served as a nitric oxide fluorescent probe. Effects of MF and ICA Ⅱ on cell proliferation of PA-stimulated RCECs were determined via CCK-8 assay.
RESULTS:
The content of nitric oxide in RCECs was significantly increased after the treatment of MF and ICA Ⅱ in comparison with the NC group (P < 0.05). Moreover, compared with ICA Ⅱ group, MF demonstrated a more obvious effect in promoting nitric oxide production (P < 0.05). Compared with the NC group, the expression levels of eNOS and AKT in the PA group were significantly decreased, indicating that a model for simulating the high-fat environment in vitro was successfully constructed (P < 0.05). Meanwhile, the intervention of MF and ICA Ⅱ could effectively increase the expression of eNOS and AKT, suggesting that MF and ICA Ⅱ could promote the recovery of endothelial dysfunction caused by high levels of free fatty acids (P < 0.05). The results of CCK-8 assays showed that PA could significantly reduce the proli-feration ability of RCECs (P < 0.05). Furthermore, the decreased cell viability induced by PA was significantly elevated by treatment with ICA Ⅱ and MF (P < 0.05).
CONCLUSION
In RCECs, MF and ICA Ⅱ could effectively increase the content of nitric oxide. The down-regulation of the expression of proteins associated with the AKT/eNOS pathway after PA treatment revealed that this pathway was involved in the development of endothelial dysfunction, which could be effectively reversed by MF and ICA Ⅱ. In addition, the cell proliferation ability was significantly decreased following PA treatment, but MF and ICA Ⅱ could restore the above changes. Overall, biflavonoid MF has an obvious repairing effect on PA-stimulated endothelial dysfunction.
Animals
;
Biflavonoids/pharmacology*
;
Cells, Cultured
;
Endothelial Cells/metabolism*
;
Nitric Oxide/pharmacology*
;
Nitric Oxide Synthase Type III/pharmacology*
;
Palmitic Acid/pharmacology*
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats
;
Signal Transduction
;
Sincalide/pharmacology*
8.Tanshinone IIA alleviates monocrotaline-induced pulmonary hypertension in rats through the PI3K/Akt-eNOS signaling pathway.
Xi Min ZHANG ; Si Jia LIU ; Ya Bin SUN ; Guo Feng LI
Journal of Southern Medical University 2022;42(5):718-723
OBJECTIVE:
To explore the therapeutic mechanism of tanshinone IIA in the treatment of pulmonary arterial hypertension (PAH) in rats.
METHODS:
A total of 100 male SD rats were randomized into 5 groups (n=20), and except for those in the control group with saline injection, all the rats were injected with monocrotaline (MCT) on the back of the neck to establish models of pulmonary hypertension. Two weeks after the injection, the rat models received intraperitoneal injections of tanshinone IIA (10 mg/kg), phosphatidylinositol 3 kinase (PI3K) inhibitor (1 mg/kg), both tanshinone IIA and PI3K inhibitor, or saline (model group) on a daily basis. After 2 weeks of treatment, HE staining and α-SMA immunofluorescence staining were used to evaluate the morphology of the pulmonary vessels of the rats. The phosphorylation levels of PI3K, protein kinase B (PKB/Akt) and endothelial nitric oxide synthase (eNOS) in the lung tissue were determined with Western blotting; the levels of eNOS and NO were measured using enzyme-linked immunosorbent assay (ELISA).
RESULTS:
The results of HE staining and α-SMA immunofluorescence staining showed that tanshinone IIA effectively inhibited MCT-induced pulmonary artery intimamedia thickening and muscularization of the pulmonary arterioles (P < 0.01). The results of Western blotting showed that treatment with tanshinone IIA significantly increased the phosphorylation levels of PI3K, Akt and eNOS proteins in the lung tissue of PAH rats; ELISA results showed that the levels of eNOS and NO were significantly decreased in the rat models after tanshinone IIA treatment (P < 0.01).
CONCLUSION
Treatment with tanshinone IIA can improve MCT-induced pulmonary hypertension in rats through the PI3K/Akt-eNOS signaling pathway.
Abietanes
;
Animals
;
Hypertension, Pulmonary/drug therapy*
;
Male
;
Monocrotaline/toxicity*
;
Nitric Oxide Synthase Type III/therapeutic use*
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Pulmonary Artery
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
9.Involvement of ET-1/eNOS in the ameliorating effect of electroacupuncture on cardiac dysfunction in rats with spontaneously hypertensive.
Juan-Juan XIN ; Jun-Hong GAO ; Qun LIU ; Yu-Xue ZHAO ; Chen ZHOU ; Xiao-Chun YU
Chinese Acupuncture & Moxibustion 2022;42(6):647-653
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Neiguan" (PC 6) on cardiac function of ventriculus sinister in rats with spontaneously hypertensive (SHR), and to explore the mediation effect of endothelin-1 (ET-1)/endothelial nitric oxide synthase (eNOS).
METHODS:
Six 12-week-old male Wistar Kyoto (WKY) rats were taken as the normal group. Eighteen 12-week-old SHR were randomly divided into a model group, an EA group and a sham EA group, 6 rats in each group. The rats in the EA group were treated with EA (disperse-dense wave, 2 Hz/15 Hz in frequency, 1 mA in current intensity) at "Neiguan" (PC 6), 30 min each time, once a day for 8 weeks. The rats in the sham EA group were treated with superficial needling at "Neiguan" (PC 6) with no electrical stimulation applied. After treatment, the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were tested by echocardiographic analysis. The left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), heart rate (HR), the maximum rate of increase/decrease of left ventricular pressure (±dp/dtmax) were detected. The serum content of ET-1 was detected by ELISA. Western blot was used to evaluate the expression of ETAR, eNOS in myocardial tissue of left ventricular.
RESULTS:
Compared with the normal group, LVEF, LVFS, +dp/dtmax/LVSP and -dp/dtmax/LVSP were decreased (P<0.01, P<0.05), while LVSP, LVEDP, +dp/dtmax and -dp/dtmax were increased (P<0.01) in the model group. Compared with the model group, LVEF, LVFS, +dp/dtmax/LVSP and -dp/dtmax/LVSP were increased (P<0.01, P<0.05), and LVSP and LVEDP were decreased (P<0.01) in the EA group. Compared with the normal group, the serum content of ET-1 and the expression of ETAR in myocardial tissue were increased (P<0.01), whereas expression of eNOS was decreased (P<0.01) in the model group. Compared with the model group, the serum content of ET-1 and the expression of ETAR in myocardial tissue were decreased (P<0.05), whereas expression of eNOS was increased (P<0.05) in the EA group.
CONCLUSION
EA intervention may alleviate hypertensive cardiac function damage by up-regulating the expression of eNOS protein in myocardial tissue, down-regulating the serum content of ET-1 and the expression of ETAR protein in myocardial tissue.
Animals
;
Electroacupuncture
;
Endothelin-1/genetics*
;
Heart Diseases
;
Hypertension/therapy*
;
Male
;
Nitric Oxide Synthase Type III/genetics*
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Stroke Volume
;
Ventricular Function, Left
10.Influence of electroacupuncture on ghrelin and the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthase signaling pathway in spontaneously hypertensive rats.
Yue ZHANG ; Dong-Ling ZHONG ; Ya-Ling ZHENG ; Yu-Xi LI ; Yi-Jie HUANG ; Yi-Jing JIANG ; Rong-Jiang JIN ; Juan LI
Journal of Integrative Medicine 2022;20(5):432-441
OBJECTIVE:
To investigate the influence of electroacupuncture (EA) on ghrelin and the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathway in spontaneously hypertensive rats (SHRs).
METHODS:
Eight Wistar-Kyoto rats were used as the healthy blood pressure (BP) control (normal group), and 32 SHRs were randomized into model group, EA group, EA plus ghrelin group (EA + G group), and EA plus PF04628935 group (a potent ghrelin receptor blocker; EA + P group) using a random number table. Rats in the normal group and model group did not receive treatment, but were immobilized for 20 min per day, 5 times a week, for 4 continuous weeks. SHRs in the EA group, EA + G group and EA + P group were immobilized and given EA treatment in 20 min sessions, 5 times per week, for 4 weeks. Additionally, 1 h before EA, SHRs in the EA + G group and EA + P group were intraperitoneally injected with ghrelin or PF04628935, respectively, for 4 weeks. The tail-cuff method was used to measure BP. After the 4-week intervention, the rats were sacrificed by cervical dislocation, and pathological morphology of the abdominal aorta was observed using hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ghrelin, nitric oxide (NO), endothelin-1 (ET-1) and thromboxane A2 (TXA2) in the serum. Isolated thoracic aortic ring experiment was performed to evaluate vasorelaxation. Western blot was used to measure the expression of PI3K, Akt, phosphorylated Akt (p-Akt) and eNOS proteins in the abdominal aorta. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure the relative levels of mRNA expression for PI3K, Akt and eNOS in the abdominal aorta.
RESULTS:
EA significantly reduced the systolic BP (SBP) and diastolic BP (DBP) (P < 0.05). HE staining showed that EA improved the morphology of the vascular endothelium to some extent. Results of ELISA indicated that higher concentrations of ghrelin and NO, and lower concentrations of ET-1 and TXA2 were presented in the EA group (P < 0.05). The isolated thoracic aortic ring experiment demonstrated that the vasodilation capacity of the thoracic aorta increased in the EA group. Results of Western blot and qRT-PCR showed that EA increased the abundance of PI3K, p-Akt/Akt and eNOS proteins, as well as expression levels of PI3K, Akt and eNOS mRNAs (P < 0.05). In the EA + G group, SBP and DBP decreased (P < 0.05), ghrelin concentrations increased (P < 0.05), and the concentrations of ET-1 and TXA2 decreased (P < 0.05), relative to the EA group. In addition, the levels of PI3K and eNOS proteins, the p-Akt/Akt ratio, and the expression of PI3K, Akt and eNOS mRNAs increased significantly in the EA + G group (P < 0.05), while PF04628935 reversed these effects.
CONCLUSION
EA effectively reduced BP and protected the vascular endothelium, and these effects may be linked to promoting the release of ghrelin and activation of the PI3K/Akt/eNOS signaling pathway.
Animals
;
Electroacupuncture
;
Ghrelin/pharmacology*
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type III/pharmacology*
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/pharmacology*
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Signal Transduction

Result Analysis
Print
Save
E-mail