1.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
2.FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway.
Yan-Jun ZHANG ; Fei-Fei XIAO ; Xiao-Hua LI ; Shen-Hua TANG ; Yi SANG ; Chao-Yue LIU ; Jian-Chang LI
Chinese Journal of Contemporary Pediatrics 2025;27(5):601-608
OBJECTIVES:
To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG).
METHODS:
Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene.
RESULTS:
Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05).
CONCLUSIONS
FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.
Humans
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Fibroblast Growth Factors/pharmacology*
;
Heme Oxygenase-1/physiology*
;
Apoptosis/drug effects*
;
Glucose
;
Inflammation
;
Interleukin-6/analysis*
;
Vascular Endothelial Growth Factor A/genetics*
;
Nitric Oxide Synthase Type II/analysis*
;
Cells, Cultured
3.Tripterygium wilfordii attenuates acute lung injury by regulating the differentiation and function of myeloid-derived suppressor cells.
Lingyu WEI ; Shu TONG ; Meng'er WANG ; Hongzheng REN ; Jinsheng WANG
Journal of Central South University(Medical Sciences) 2025;50(5):840-850
OBJECTIVES:
Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. Tripterygium wilfordii (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases. This study aims to investigate the effects and underlying mechanisms of TW on myeloid-derived suppressor cells (MDSCs) in ALI, providing experimental evidence for TW as a potential adjuvant therapy for ALI.
METHODS:
Eighteen specific pathogen-free (SPF) C57BL/6 mice were randomly divided into normal control (NC; intranasal saline), lipopolysaccharide (LPS; 5 mg/kg intranasally to induce ALI), and LPS+TW (50 mg/kg TW by gavage on the first day of modeling, followed by 5 mg/kg LPS intranasally to induce ALI) groups (n=6 each). Lung injury and edema were assessed by histopathological scoring and wet-to-dry weight ratio. Cytokine levels [interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor-α (TNF-α)] in lung tissue lavage fluid were measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to assess the proportions of MDSCs, polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-MDSCs) in bone marrow, spleen, peripheral blood, and lung tissue, as well as reactive oxygen species (ROS) levels in lung tissues. Messenger RNA (mRNA) expression levels of inducible nitric oxide synthase (iNOS) and arginase-1 (ARG-1) in lung tissues were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). PMN-MDSCs sorted from the lungs of LPS-treated mice were co-cultured with splenic CD3+ T cells and divided into NC, triptolide (TPL)-L, and TPL-H groups, with bovine serum albumin, 25 nmol/L TPL, and 50 nmol/L TPL, respectively. Flow cytometry was used to detect the effect of PMN-MDSCs on T-cell proliferation, and RT-qPCR was used to measure iNOS and ARG-1 mRNA expression.
RESULTS:
Compared with the NC group, the LPS group showed marked lung pathology with significantly increased histopathological scores and wet-to-dry ratios (both P<0.001). TW treatment significantly alleviated lung injury and reduced both indices compared with the LPS group (both P<0.05). Cytokine levels were significantly decreased in the LPS+TW group compared with the LPS group (all P<0.001). The proportions of MDSCs in CD45+ cells from spleen, bone marrow, peripheral blood, and lung, as well as PMN-MDSCs from spleen, peripheral blood, and lung, were significantly reduced in the LPS+TW group compared with the LPS group (all P<0.05), accompanied by reduced ROS levels in lung tissues (P<0.001). iNOS and ARG-1 mRNA expression in lung tissues was significantly lower in the LPS+TW group than in the LPS group (both P<0.001). In vitro, compared with the TPL-L group, the TPL-H group showed significantly increased CD3+ T-cell proliferation (P<0.001), and decreased iNOS and ARG-1 mRNA expression (all P<0.05).
CONCLUSIONS
TW alleviates the progression of LPS-induced ALI in mice, potentially by reducing the proportion of MDSCs in lung tissues and attenuating the immunosuppressive function of PMN-MDSCs.
Animals
;
Acute Lung Injury/chemically induced*
;
Myeloid-Derived Suppressor Cells/cytology*
;
Tripterygium/chemistry*
;
Mice, Inbred C57BL
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/genetics*
;
Cytokines/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Diterpenes/pharmacology*
;
Epoxy Compounds
;
Phenanthrenes
4.Ameliorative effects and mechanisms of an integrated endoplasmic reticulum stress inhibitor on lipopolysaccharide-induced cognitive impairment in mice.
Dandan LIU ; Wenjia LIU ; Lihua XIE ; Xiaofan XU ; Xiaolin ZHONG ; Wenyu CAO ; Yang XU ; Ling CHEN
Journal of Central South University(Medical Sciences) 2025;50(6):986-994
OBJECTIVES:
The integrated endoplasmic reticulum stress inhibitor (ISRIB) is a selective inhibitor of the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway within endoplasmic reticulum stress (ERS) and can improve spatial and working memory in aged mice. Although ERS and oxidative stress are tightly interconnected, it remains unclear whether ISRIB alleviates cognitive impairment by restoring the balance between ERS and oxidative stress. This study aims to investigate the effects and mechanisms of ISRIB on lipopolysaccharide (LPS)-induced cognitive impairment in mice.
METHODS:
Eight-week-old male ICR mice were randomly divided into 3 groups: Normal saline (NS) group, LPS group, and ISRIB+LPS group. NS and LPS groups received daily intraperitoneal injections of normal saline for 7 days; on day 7, LPS group mice received intraperitoneal LPS (0.83 mg/kg) to establish a cognitive impairment model. ISRIB+LPS group received ISRIB (0.25 mg/kg) intraperitoneally for 7 days, with LPS injected 30 minutes after ISRIB on day 7. Cognitive ability was evaluated by the novel place recognition test (NPRT). Real-time fluorogenic quantitative PCR (RT-qPCR) was used to detect changes in nitric oxide synthase (NOS), superoxide dismutase-1 (SOD-1), and catalase (CAT) gene expression in the hippocampus and prefrontal cortex. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG), were measured in hippocampal and prefrontal cortex tissues.
RESULTS:
Compared with the NS group, mice in LPS group showed a significant reduction in novel place recognition ratio, upregulation of hippocampal NOS-1 and NOS-2 mRNA, downregulation of SOD-1 and CAT mRNA, increased MDA and GSSG, decreased GSH, and reduced GSH/GSSG ratio (all P<0.05). Compared with the LPS group, mice in ISRIB+LPS group exhibited significantly improved novel place recognition, downregulated NOS-1 and NOS-2 mRNA, upregulated SOD-1 and CAT mRNA, decreased MDA and GSSG, increased GSH, and an elevated GSH/GSSG ratio in the hippocampus (all P<0.05). No significant changes were observed in the prefrontal cortex.
CONCLUSIONS
ISRIB improves LPS-induced cognitive impairment in mice by restoring the oxidative/antioxidant balance in the hippocampus.
Animals
;
Lipopolysaccharides
;
Male
;
Mice, Inbred ICR
;
Cognitive Dysfunction/drug therapy*
;
Mice
;
Oxidative Stress/drug effects*
;
Endoplasmic Reticulum Stress/drug effects*
;
Hippocampus/drug effects*
;
Nitric Oxide Synthase Type II/genetics*
;
Guanidines/pharmacology*
;
eIF-2 Kinase/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Superoxide Dismutase/metabolism*
5.High glucose induces pro-inflammatory polarization of macrophages by inhibiting immune-responsive gene 1 expression.
Wei LUO ; Yuhang WANG ; Yansong LIU ; Yuanyuan WANG ; Lei AI
Journal of Southern Medical University 2025;45(1):1-9
OBJECTIVES:
To investigate the effect of high glucose on macrophage polarization and the role of immune-responsive gene 1 (IRG1) in mediating its effect.
METHODS:
RAW264.7 cells were transfected with IRG1-overexpressing plasmid or IRG1 siRNA via electroporation and cultured in either normal or high glucose for 72 h to observe the changes in cell viability and morphology using CCK-8 assay and phase contrast microscopy. The protein levels of IRG1, iNOS, Arg-1, IL-1β and IL-10 in the treated cells were detected with Western blotting, and the fluorescence intensities of iNOS and Arg-1 were detected using immunofluorescence assay. The protein levels of IL-1β and IL-10 in the culture medium were determined with ELISA.
RESULTS:
High glucose exposure significantly reduced IRG1 and Arg-1 expressions, increased iNOS and IL-1β expressions and IL-1β secretion, and decreased IL-10 level in RAW264.7 cells. Transfection with the IRG1-overexpressing plasmid provided the cells with obvious resistance to high glucose-induced changes in iNOS, Arg-1, IL-1β and IL-10, whereas IRG1 knockdown further enhanced the effects of high glucose exposure on Arg-1 expression and the expression and secretion of IL-10.
CONCLUSIONS
High glucose promotes M1 polarization of the macrophages possibly through a mechanism to inhibit the expression of IRG1 protein, thus leading to chronic inflammatory response.
Animals
;
Mice
;
Macrophages/drug effects*
;
Glucose/pharmacology*
;
Interleukin-10/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
RAW 264.7 Cells
;
Interleukin-1beta/metabolism*
;
Arginase/metabolism*
;
RNA, Small Interfering/genetics*
;
Transfection
;
Inflammation
6.Shionone protects cerebral ischemic injury through alleviating microglia-mediated neuroinflammation.
Lushan XU ; Chenggang LI ; ChenChen ZHAO ; Zibu WANG ; Zhi ZHANG ; Xin SHU ; Xiang CAO ; Shengnan XIA ; Xinyu BAO ; Pengfei SHAO ; Yun XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):471-479
Microglia, the resident immune cells in the central nervous system (CNS), rapidly transition from a resting to an active state in the acute phase of ischemic brain injury. This active state mediates a pro-inflammatory response that can exacerbate the injury. Targeting the pro-inflammatory response of microglia in the semi-dark band during this acute phase may effectively reduce brain injury. Shionone (SH), an active ingredient extracted from the dried roots and rhizomes of the genus Aster (Asteraceae), has been reported to regulate the inflammatory response of macrophages in sepsis-induced acute lung injury. However, its function in post-stroke neuroinflammation, particularly microglia-mediated neuroinflammation, remains uninvestigated. This study found that SH significantly inhibited lipopolysaccharide (LPS)-induced elevation of inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS), in microglia in vitro. Furthermore, the results demonstrated that SH alleviated infarct volume and improved behavioral performance in middle cerebral artery occlusion (MCAO) mice, which may be attributed to the inhibition of the microglial inflammatory response induced by SH treatment. Mechanistically, SH potently inhibited the phosphorylation of serine-threonine protein kinase B (AKT), mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 (STAT3). These findings suggest that SH may be a potential therapeutic agent for relieving ischemic stroke (IS) by alleviating microglia-associated neuroinflammation.
Animals
;
Microglia/immunology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Brain Ischemia/immunology*
;
Neuroinflammatory Diseases/drug therapy*
;
Neuroprotective Agents/administration & dosage*
;
Interleukin-1beta/genetics*
;
STAT3 Transcription Factor/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Nitric Oxide Synthase Type II/genetics*
;
Lipopolysaccharides
7.Lirispirolides A-L, a new class of sesquiterpene-monoterpene heterodimers with anti-neuroinflammatory activity from the rare medicinal plant Liriodendron chinense.
Yuhang HE ; Kexin LI ; Yufei WU ; Zexin JIN ; Jinfeng HU ; Yicheng MAO ; Juan XIONG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):938-950
Lirispirolides A-L (1-12), twelve novel sesquiterpene-monoterpene heterodimers featuring distinctive carbon skeletons, were isolated from the branches and leaves of Chinese tulip tree [Liriodendron chinense (L. chinense)], a rare medicinal and ornamental plant endemic to China. The structural elucidation was accomplished through comprehensive spectroscopic analyses, quantum-chemical calculations, and X-ray crystallography. These heterodimers exhibit a characteristic 2-oxaspiro[4.5]decan-1-one structural motif, biosynthetically formed through intermolecular [4 + 2]-cycloaddition between a germacrane-type sesquiterpene and an ocimene-type monoterpene. The majority of the isolated compounds demonstrated significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV-2 microglial cells by reducing the production of pro-inflammatory mediators, specifically tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Further investigation revealed that the lirispirolides' inhibition of NO release correlated with decreased messenger ribonucleic acid (mRNA) expression of inducible NO synthase (iNOS).
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Animals
;
Mice
;
Tumor Necrosis Factor-alpha/genetics*
;
Nitric Oxide/immunology*
;
Microglia/immunology*
;
Molecular Structure
;
Liriodendron/chemistry*
;
Monoterpenes/isolation & purification*
;
Plants, Medicinal/chemistry*
;
Cell Line
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
China
8.Dimeric sesquiterpenoids with anti-inflammatory activities from Inula britannica.
Juan ZHANG ; Jiankun YAN ; Hongjun DONG ; Rui ZHANG ; Jing CHANG ; Yanli FENG ; Xinrong XU ; Wei LI ; Feng QIU ; Chengpeng SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):961-971
In continuation of research aimed at identifying anti-inflammatory agents from natural sesquiterpenoids, an activity-guided fractionation approach utilizing lipopolysaccharide (LPS)-mediated RAW264.7 cells was employed to investigate chemical constituents from Inula Britannica (I. britannica). Seven novel sesquiterpenoid dimers inulabritanoids A-G (1-7) and two novel sesquiterpenoid monomers inulabritanoids H (8) and I (9) were isolated from I. britannica together with eighteen known compounds (10-27). The structural elucidation was accomplished through comprehensive analysis of 1D and 2D nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and electronic circular dichroism (ECD) spectra, complemented by quantum chemical calculations. Compounds 1, 2, 12, 16, 19, and 26 demonstrated inhibitory effects on NO production, with IC50 values of 3.65, 5.48, 3.29, 6.91, 3.12, and 5.67 μmol·L-1, respectively. Mechanistic studies revealed that compound 1 inhibited IκB kinase β (IKKβ) phosphorylation, thereby blocking nuclear factor κB (NF-κB) nuclear translocation, and activated the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway, leading to decreased expression of NADPH oxidase 2 (NOX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), IL-1β, and IL-1α and increased expression of NAD(P)H: quinone oxidoreductase 1 (NQO-1) and heme oxygenase-1 (HO-1), thus exhibiting anti-inflammatory effects in vitro. These results indicate that dimeric sesquiterpenoids may serve as promising candidates for anti-inflammatory drug development.
Mice
;
Animals
;
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Inula/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
;
NF-kappa B/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Macrophages/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
Lipopolysaccharides
;
Tumor Necrosis Factor-alpha/immunology*
;
I-kappa B Kinase/genetics*
9.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
10.Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy.
Na HE ; Qi-Hai GONG ; Feng ZHANG ; Jing-Yi ZHANG ; Shu-Xian LIN ; Hua-Hua HOU ; Qin WU ; An-Sheng SUN
Chinese journal of integrative medicine 2018;24(5):359-365
OBJECTIVETo investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa (Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms.
METHODSCardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca]) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis.
RESULTSCompared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca]) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca] concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05).
CONCLUSIONEvo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca]i concentration, and inhibition of CaN and ERK-2 signal transduction pathways.
Angiotensin II ; Animals ; Atrial Natriuretic Factor ; metabolism ; Calcineurin ; genetics ; metabolism ; Calcium ; metabolism ; Dual Specificity Phosphatase 1 ; genetics ; metabolism ; Extracellular Signal-Regulated MAP Kinases ; genetics ; metabolism ; Hypertrophy ; Myocytes, Cardiac ; drug effects ; metabolism ; pathology ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Quinazolines ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail