1.Discovery and bioassay of disubstituted β-elemene-NO donor conjugates: synergistic enhancement in the treatment of leukemia.
Junlong ZHU ; Xiaoying JIANG ; Xinyu LUO ; Yuan GAO ; Rui ZHAO ; Junjie LI ; Hong CAI ; Xiawen DANG ; Xiangyang YE ; Renren BAI ; Tian XIE
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):916-926
Natural products are essential sources of antitumor drugs. One such molecule, β-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor β-elemene derivatives were designed, with β-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.
Humans
;
Mice
;
Animals
;
Cell Line, Tumor
;
Nitric Oxide Donors/pharmacology*
;
Sesquiterpenes/pharmacology*
;
Leukemia/drug therapy*
;
Biological Assay
;
Cell Proliferation
2.Synthesis and anti-hepatocellular carcinoma activity of novel O-vinyl diazeniumdiolate-based nitric oxide-releasing derivatives of oleanolic acid.
Yu ZOU ; Chang YAN ; Jing-Chao LIU ; Zhang-Jian HUANG ; Jin-Yi XU ; Jin-Pei ZHOU ; Hui-Bin ZHANG ; Yi-Hua ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):928-937
Considering that high levels of nitric oxide (NO) exert anti-cancer effect and the derivatives of oleanolic acid (OA) have shown potent anti-cancer activity, new O-vinyl diazeniumdiolate-based NO releasing derivatives (5a-l, 11a-l) of OA were designed, synthesized, and biologically evaluated in the present study. These derivatives could release different amounts of NO in liver cells. Among them, 5d, 5i, 5j, 11g, 11h, and 11j released more NO in SMMC-7721 cells and displayed stronger proliferative inhibition against SMMC-7721 and HepG2 cells than OA and other tested compounds. The most active compound 5j showed almost 20-fold better solubility than OA in aqueous solution, released larger amounts of NO in liver cancer cells than that in normal ones, and exhibited potent anti-hepatocellular carcinoma activity but little effect on the normal liver cells. The inhibitory activity against the cancer cells was significantly diminished upon addition of an NO scavenger, suggesting that NO may contribute, at least in part, to the activity of 5j.
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Apoptosis
;
drug effects
;
Azo Compounds
;
chemistry
;
Carcinoma, Hepatocellular
;
drug therapy
;
pathology
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Drug Screening Assays, Antitumor
;
Hep G2 Cells
;
Hepatocytes
;
drug effects
;
metabolism
;
pathology
;
Humans
;
Liver Neoplasms
;
drug therapy
;
pathology
;
Nitric Oxide
;
chemistry
;
Nitric Oxide Donors
;
chemical synthesis
;
chemistry
;
pharmacology
;
Oleanolic Acid
;
analogs & derivatives
;
chemistry
;
pharmacology
3.Effect of Nitric Oxide on the Expression of Matrix Metalloproteinase and Its Association with Migration of Cultured Trabecular Meshwork Cells.
Korean Journal of Ophthalmology 2016;30(1):66-75
PURPOSE: To determine the effect of exogenous nitric oxide (NO) on the migration of trabecular meshwork (TM) cells and its association with expression of matrix metalloproteinases (MMPs). METHODS: Primary human TM cells treated with 1 or 10 microM S-nitroso-N-acetyl-penicillamine (SNAP) and examined for changes in adherence. TM cells were seeded onto transwell culture inserts, and changes in their migratory activity were quantified. Reverse transcription polymerase chain reaction was performed to determine the relative changes in mRNA expression of MMPs and tissue inhibitor of metalloproteinases (TIMPs). RESULTS: Treatment with SNAP did not significantly suppress TM cell adhesion or migration (p > 0.05). Treatment of TM cells with 10 microM SNAP decreased expression of MMP-2 and increased expression of membrane type MMP-1 and TIMP-2. Treatment with interleukin-1alpha triggered MMP-3 expression but did not exert significant effects on MMP-3 activation in response to SNAP. CONCLUSIONS: These data suggest that NO revealed no significant effect on the migration of TM cells because NO decreased MMP-2 and increased TIMP-2 expression. Although expression of certain MMPs and TIMPs change in response to NO donors, NO may modulate trabecular outflow by changing the cellular production of extracellular matrix without having a significant effect on the migration of TM cells.
Cell Movement/*drug effects
;
Cell Survival/drug effects
;
Cells, Cultured
;
DNA Primers/chemistry
;
Gene Expression Regulation, Enzymologic/*physiology
;
Humans
;
Matrix Metalloproteinases/*genetics
;
Nitric Oxide Donors/*pharmacology
;
RNA, Messenger/genetics
;
Real-Time Polymerase Chain Reaction
;
S-Nitroso-N-Acetylpenicillamine/*pharmacology
;
Tissue Inhibitor of Metalloproteinase-2/*genetics
;
Trabecular Meshwork/cytology/*drug effects/enzymology
4.Effects of Vam3 on sodium nitroprusside-induced apoptosis and SIRT1 and p53 expression in rat articular chondrocytes.
Ren-Tao JIANG ; Chun-Suo YAO ; Jin-Ye BAI ; Qi HOU
Acta Pharmaceutica Sinica 2014;49(5):608-614
This study is to investigate the effect of Vam3, a dimeric derivative of resveratrol, on SNP-induced apoptosis and its potential mechanism in rat articular chondrocytes. Isolated rat articular chondrocytes were treated with sodium nitroprusside (SNP), a NO donor, to induce apoptosis. Apoptosis percentage was evaluated by Annexin V-PI and nucleus fracture was examined by DAPI staining. Level of intracellular reactive oxygen species (ROS) was detected using 2, 7'-dichlorofluorescin diacetate (DCFH-DA) as a fluorescence probe by fluorescence microplate reader. The change in mitochondrial membrane potential was detected by TMRE staining. Expressions of SIRT1, acetylated p53 (ac-p53), cleaved caspase 9 and cleaved caspase 3 were determined by Western blotting. It showed that Vam3 up to 10 micromol x L(-1) could significantly reduce SNP-induced rat articular chondrocytes apoptosis (P < 0.01) and nucleus fracture, inhibit the increase of intracellular ROS level (P < 0.01) and reverse the decrease in mitochondrial membrane potential (P < 0.01). Simultaneously, Vam3 could upregulate the expression of SIRT1, deacetylate p53, and inhibit the cleavage of caspase 9 and caspase 3 (P < 0.01) of rat articular chondrocytes exposed to SNP. This study indicates Vam3 could protect rat articular chondrocytes against SNP-induced apoptosis, perhaps through the upregulation of SIRT1 and deacetylation of p53.
Animals
;
Apoptosis
;
drug effects
;
Arabidopsis Proteins
;
pharmacology
;
Cartilage, Articular
;
cytology
;
Caspase 3
;
metabolism
;
Caspase 9
;
metabolism
;
Cells, Cultured
;
Chondrocytes
;
cytology
;
metabolism
;
Male
;
Membrane Potential, Mitochondrial
;
drug effects
;
Nitric Oxide Donors
;
antagonists & inhibitors
;
pharmacology
;
Nitroprusside
;
pharmacology
;
Qa-SNARE Proteins
;
pharmacology
;
Rats
;
Rats, Wistar
;
Reactive Oxygen Species
;
metabolism
;
Sirtuin 1
;
metabolism
;
Tumor Suppressor Protein p53
;
metabolism
5.Curcumin induces differentiation of embryonic stem cells through possible modulation of nitric oxide-cyclic GMP pathway.
Kalpana MUJOO ; Lubov E NIKONOFF ; Vladislav G SHARIN ; Nathan S BRYAN ; Alexander Y KOTS ; Ferid MURAD
Protein & Cell 2012;3(7):535-544
Curcumin, an active ingredient of dietary spice used in curry, has been shown to exhibit anti-oxidant, anti-inflammatory and anti-proliferative properties. Using EB directed differentiation protocol of H-9 human embryonic stem (ES) cells; we evaluated the effect of curcumin (0-20 μmol/L) in enhancing such differentiation. Our results using real time PCR, western blotting and immunostaining demonstrated that curcumin significantly increased the gene expression and protein levels of cardiac specific transcription factor NKx2.5, cardiac troponin I, myosin heavy chain, and endothelial nitric oxide synthase during ES cell differentiation. Furthermore, an NO donor enhanced the curcumin-mediated induction of NKx2.5 and other cardiac specific proteins. Incubation of cells with curcumin led to a dose dependent increase in intracellular nitrite to the same extent as giving an authentic NO donor. Functional assay for second messenger(s) cyclic AMP (cAMP) and cyclic GMP (cGMP) revealed that continuous presence of curcumin in differentiated cells induced a decrease in the baseline levels of cAMP but it significantly elevated baseline contents of cGMP. Curcumin addition to a cell free assay significantly suppressed cAMP and cGMP degradation in the extracts while long term treatment of intact cells with curcumin increased the rates of cAMP and cGMP degradation suggesting that this might be due to direct suppression of some cyclic nucleotide-degrading enzyme (phosphodiesterase) by curcumin. These studies demonstrate that polyphenol curcumin may be involved in differentiation of ES cells partly due to manipulation of nitric oxide signaling.
Animals
;
Antioxidants
;
pharmacology
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Curcumin
;
pharmacology
;
Cyclic GMP
;
metabolism
;
Embryoid Bodies
;
drug effects
;
metabolism
;
physiology
;
Enzyme Activators
;
pharmacology
;
Gene Expression
;
drug effects
;
Guanylate Cyclase
;
genetics
;
metabolism
;
Homeobox Protein Nkx-2.5
;
Homeodomain Proteins
;
genetics
;
metabolism
;
Humans
;
Mice
;
Myosin Heavy Chains
;
genetics
;
metabolism
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Donors
;
pharmacology
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Nitroso Compounds
;
pharmacology
;
Pyrazoles
;
pharmacology
;
Pyridines
;
pharmacology
;
Second Messenger Systems
;
Transcription Factors
;
genetics
;
metabolism
;
Troponin
;
genetics
;
metabolism
;
Tumor Suppressor Protein p53
;
metabolism
6.Influence of nitric oxide on in vitro growth, survival, steroidogenesis, and apoptosis of follicle stimulating hormone stimulated buffalo (Bubalus bubalis) preantral follicles.
Pawan K DUBEY ; Vrajesh TRIPATHI ; Ram Pratap SINGH ; G Taru SHARMA
Journal of Veterinary Science 2011;12(3):257-265
Effect of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on in vitro survival, growth, steroidogenesis, and apoptosis of buffalo preantral follicles (PFs) was investigated. PFs (200~250 microm) were isolated by micro-dissection and cultured in 0 (control), 10(-3), 10(-5), 10(-7), and 10(-9) M SNP. To examine the reversible effect of SNP, PFs were cultured with 10(-5) M SNP + 1 mM Nomega-nitro-L-arginine methyl ester (L-NAME) or 1.0 microg hemoglobin (Hb). The results showed that greater concentrations of SNP (10(-3), 10(-5), 10(-7) M) inhibited (p < 0.05) FSH-induced survival, growth, antrum formation, estradiol production, and oocyte apoptosis in a dose-dependent manner. However, a lower dose of SNP (10(-9) M) significantly stimulated (p < 0.05) the survival, growth, antrum formation, follicular oocyte maturation, and stimulated progesterone secretion compared to the control. A combination of SNP + L-NAME promoted the inhibitor effect of SNP while a SNP + Hb combination reversed this effect. Nitrate and nitrite concentrations in the culture medium increased (p < 0.05) in a dose-dependent manner according to SNP concentration in the culture medium. At higher concentrations, SNP had a cytotoxic effect leading to follicular oocyte apoptosis whereas lower concentrations have stimulatory effects. In conclusion, NO exerts a dual effect on its development of buffalo PFs depending on the concentration in the culture medium.
Animals
;
*Apoptosis
;
Buffaloes/*physiology
;
Estradiol/biosynthesis
;
Female
;
Follicle Stimulating Hormone/metabolism
;
NG-Nitroarginine Methyl Ester/pharmacology
;
Nitrates/pharmacology
;
Nitric Oxide/*metabolism
;
Nitric Oxide Donors/pharmacology
;
Nitrites/pharmacology
;
Nitroprusside/pharmacology
;
Oocytes/cytology/drug effects/growth & development/metabolism
;
Ovarian Follicle/*cytology/drug effects/growth & development/*metabolism
;
Progesterone/biosynthesis
7.Effect of nitric oxide on the proliferation of AGS gastric cancer cells.
Jian-Rong SANG ; Yong-Chang CHEN ; Gen-Bao SHAO ; Xiao-Jia HUANG
Chinese Journal of Cancer 2010;29(2):158-162
BACKGROUND AND OBJECTIVENitric oxide (NO) is involved in many physiologic and pathologic processes. As an important biologic mediator, NO has been the focus of cancer study for its function in tumorigenesis, tumor progression, and death. This study investigated the effect of NO donor sodium nitroprusside (SNP) on the growth and proliferation of gastric cancer cell line AGS.
METHODSThe growth inhibition of AGS cells was analyzed using MTT assay. The cell cycle was measured using flow cytometry. The changes of mRNA expression of proliferating cell nuclear antigen (PCNA) and caspase-3 were examined using reverse transcriptase polymerase chain reaction (RT-PCR), and the protein expressions of PCNA and caspase-3 were analyzed using Western blot.
RESULTSDose-dependent SNP inhibited cell growth and proliferation. When the AGS cells were treated with SNP at 100, 500, 1000, 1500, and 2000 mumol/L for 24 h, the growth inhibition rates were (2.02 +/- 2.96)%, (10.82 +/- 2.21)%, (18.95 +/- 3.35)%, (26.88 +/- 2.54)%, and (42.57 +/- 1.27)%, respectively (P < 0.05). SNP altered the cell cycle in AGS cells. Compared with the control group, treatment with SNP at 100, 500, 1000, 1500, and 2000 mumol/L for 24 h reduced the number of cells in the S phase by 2.29%, 7.8%, 11.34%, 20.49%, and 23.6%, respectively, and enhanced the number of cells in the G1/G0 phases by 3.33%, 9.3%, 13.46%, 21.37%, and 24.73%, respectively (P < 0.05). With the increasing concentration and action time of SNP, the expressions of PCNA mRNA and protein decreased. The expression of caspase-3 mRNA remained unchanged, but procaspase-3 was activated.
CONCLUSIONNO not only inhibits cell growth and proliferation, but also induces apoptosis in gastric cancer cells, and such effects of NO showed significant dose-dependent activity.
Apoptosis ; drug effects ; Caspase 3 ; genetics ; metabolism ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Dose-Response Relationship, Drug ; Enzyme Activation ; drug effects ; Gene Expression Regulation, Neoplastic ; Humans ; Nitric Oxide Donors ; pharmacology ; Nitroprusside ; pharmacology ; Proliferating Cell Nuclear Antigen ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Stomach Neoplasms ; metabolism ; pathology
8.Synthesis and biological evaluation of nitrate-oleanolic acid hybrids as inhibitors of HepG2 cell apoptosis.
Li CHEN ; Juan SHANG ; Zhi-feng WANG ; Yi-hu ZHANG ; Ji-de TIAN
Acta Pharmaceutica Sinica 2010;45(12):1516-1522
To find novel antihepatitis drugs, a series of nitrate-oleanolic acid (OA) hybrids (10a, 10b, 11a-11e and 12a-12c) were designed and synthesized on the basis of previous studies using OA as lead compound, which is widely found in natural plants and liver-specific metabolism. In the present study, ten novel NO-releasing derivatives of OA were synthesized by connecting nitrate to the OA-3-OH through varying lengths of linkers containing antioxidants which were designed to increase the ability of these target compounds to scavenge free radicals. The structures of these objective compounds were determined by IR, MS, 1H NMR and elemental analysis. Their protective effects on anti-Fas mediated HepG2 cell apoptosis were in vitro evaluated by LDH assay. Compound 12a is the most potent inhibitor. Its effect on anti-Fas mediated HepG2 cell apoptosis and amount of NO-releasing in vitro are similar to those of positive control NCX-1000.
Antioxidants
;
chemistry
;
Apoptosis
;
drug effects
;
Hep G2 Cells
;
Humans
;
Nitrates
;
chemical synthesis
;
chemistry
;
pharmacology
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Donors
;
chemistry
;
Oleanolic Acid
;
chemical synthesis
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
;
Ursodeoxycholic Acid
;
analogs & derivatives
;
pharmacology
9.Downregulation of endothelin-1 by somatostatin improves liver function of recipients undergoing adult-to-adult living donor liver transplantation.
Zhi-ying FENG ; Xiao XU ; Ling-jiao WU ; Jian WU ; Sheng-mei ZHU ; Shu-sen ZHENG
Chinese Medical Journal 2010;123(15):1961-1966
BACKGROUNDThe aim of this study was to investigate the possible effect of somatostatin on the liver function of recipients undergoing living donor liver transplantation.
METHODSForty recipients were randomized into group A (n = 20) and group B (n = 20). Recipients in group A received no somatostatin whereas somatostatin was administrated for recipients in group B perioperatively. Liver function, the plasma concentration of endothelin-1 and nitric oxide, the intragraft expressions of endothelin-1 and inducible nitric oxide syntheses at 2 hours after declamping of the portal vein were compared between the two groups.
RESULTSCompared to group A, alanine transaminase values in group B were significantly reduced at 2 hours after portal vein declamping, at the end of the operation and postoperation day 1 (P < 0.05), whereas aspartate aminotransferase values in group B decreased at 30 minutes after portal vein clamping, at 2 hours after portal vein declamping and at the end of the operation (P < 0.05). Total bilirubin values in group B were reduced significantly at 2 hours after portal vein declamping and at the end of the operation when compared to group A (P < 0.05). Intragraft expression of endothelin-1 was significantly downregulated at 2 hours after declamping of the portal vein accompanied with a reduction of plasma concentration of endothelin-1 in the peripheral blood (P < 0.05).
CONCLUSIONSSomatostatin had a protective effect on liver function during the early phase after declamping of portal vein for recipients undergoing living donor liver transplantation, and the possible mechanism might be partially attributed to the downregulation of endothelin-1.
Adult ; Down-Regulation ; drug effects ; Endothelin-1 ; blood ; Female ; Hormones ; pharmacology ; therapeutic use ; Humans ; Immunohistochemistry ; Liver ; drug effects ; Liver Transplantation ; methods ; Living Donors ; Male ; Middle Aged ; Nitric Oxide ; blood ; Somatostatin ; pharmacology ; therapeutic use
10.Advances in the study of nitric oxide-donating drugs.
Acta Pharmaceutica Sinica 2009;44(11):1200-1210
Nitric oxide (NO) as a messenger and/or effector plays important roles in vivo. The decreased availability of NO or dysfunction in NO signaling has often been implicated in the development and progression of diseases, and design and research of NO-donating drugs has become one of the important strategies in drug discovery. In connection with authors' scientific practice, this article reviews the recent advances in the research of NO-donating drugs.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
therapeutic use
;
Antineoplastic Agents
;
pharmacology
;
therapeutic use
;
Aspirin
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Azo Compounds
;
pharmacology
;
Cardiovascular Diseases
;
drug therapy
;
Cell Line, Tumor
;
Drug Design
;
Humans
;
Neoplasms
;
drug therapy
;
pathology
;
Nitrates
;
pharmacology
;
therapeutic use
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Donors
;
pharmacology
;
therapeutic use
;
Piperazines
;
pharmacology
;
Signal Transduction
;
drug effects

Result Analysis
Print
Save
E-mail