1.Sesquiterpenoids from resin of Commiphora myrrha.
Hao HUANG ; Ran WANG ; Ya-Zhu YANG ; Jiao-Jiao YIN ; Yue LIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2025;50(3):702-707
The chemical constituents of Commiphora myrrha was investigated by column chromatography on silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Their structures were elucidated by comprehensive spectroscopic methods including UV, IR, MS, NMR, as well as ECD calculation. Seven compounds were isolated from the dichloromethane-soluble fraction of C. myrrha and their structures were identified as(1S,2R,4S,5R,8S)-guaiane-2-hydroxy-7(11),10(15)-dien-6-oxo-12,8-olide(1), commipholide E(2), myrrhterpenoid H(3), myrrhterpenoid I(4), myrrhterpenoid E(5), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(6), 8,12-epoxy-1α,9α-hydroxy-eudesma-7,11-diene-6-dione(7). Compound 1 was a new compound and named myrrhterpenoid P. Compound 7 was isolated from Commiphora genus for the first time. Compounds 2, 5, and 6 significantly inhibited nitric oxide(NO) production in LPS-stimulated RAW264.7 cells, with IC_(50) values of(49.67±4.16),(40.80±1.27),(47.22±0.87) μmol·L~(-1), respectively [indomethacin as the positive control, with IC_(50) value of(63.92±2.60) μmol·L~(-1)].
Commiphora/chemistry*
;
Animals
;
Mice
;
Resins, Plant/chemistry*
;
Sesquiterpenes/isolation & purification*
;
Molecular Structure
;
Nitric Oxide
;
Macrophages/metabolism*
;
RAW 264.7 Cells
;
Drugs, Chinese Herbal/pharmacology*
2.Pharmacodynamics study and establishment of a PK-PD model for Epimedii Folium-Chuanxiong Rhizoma in treating osteoarthritis in rats.
En-Hui WU ; Jian-Hua ZHANG ; Wen-Jun CHEN ; Ya-Hong WANG ; Hua YIN
China Journal of Chinese Materia Medica 2025;50(5):1377-1384
This study aims to reveal the correlation between the pharmacokinetics(PK) and pharmacodynamics(PD) of multiple components in Epimedii Folium-Chuanxiong Rhizoma and clarify the pharmacodynamic material basis and mechanism of this herb pair in treating osteoarthritis. The Hulth method was used to establish the rat model of osteoarthritis and plasma was collected at various time points after drug administration. The plasma concentrations of multiple components were measured. Enzyme-linked immunosorbent assay(ELISA) was used to measure the plasma concentrations of matrix metalloproteinase(MMP)-3, MMP-13, interleukin-1β(IL-1β), nitric oxide(NO), and tumor necrosis factor-α(TNF-α) as pharmacodynamic indicators. Self-defined weighting coefficients were used to calculate the PK and PD data, and a Sigmoid E_(max) fitting model was used to evaluate the synergistic effect of the compatibility of Epimedii Folium-Chuanxiong Rhizoma. The PK-PD models for Epimedii Folium, Chuanxiong Rhizoma, and Epimedii Folium-Chuanxiong Rhizoma were E=(1.926×C~(2.652))/(0.136 6~(2.652)+C~(2.652)), E=(1.618×C~(345.2))/(0.118 4~(345.2)+C~(345.2)), and E=(2.305×C~(2.786))/(0.240 3~(2.786)+C~(2.786)), respectively. The E_(max) of Epimedii Folium-Chuanxiong Rhizoma was larger than those of the two herbal medicines alone. The EC_(50) of the herb pair was lower than the sum of Epimedii Folium and Chuanxiong Rhizoma alone. The concentrations of MMP-3, MMP-13, IL-1β, NO, and TNF-α were correlated with mass concentrations of multiple components in Epimedii Folium and Chuanxiong Rhizoma, and the compatibility was better than single use. Epimedii Folium, Chuanxiong Rhizoma, and Epimedii Folium-Chuanxiong Rhizoma may play a role in the treatment of osteoarthritis by inhibiting MMP-3, MMP-13, IL-1β, NO, and TNF-α.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Osteoarthritis/metabolism*
;
Epimedium/chemistry*
;
Interleukin-1beta/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
Disease Models, Animal
;
Nitric Oxide/blood*
;
Humans
;
Rhizome/chemistry*
3.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
4.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
5.Metabolites and anti-inflammatory activities of Monascus sanguineus.
Ji-Yuan FAN ; Bing-Yu LIU ; Hui-Ming HUA ; You-Cai HU
China Journal of Chinese Materia Medica 2025;50(13):3699-3735
A variety of chromatographic techniques, including silica gel, ODS, Sephadex LH-20, and HPLC, were employed to isolate and purify the fermentation products of rice with Monascus sanguineus. A total of 38 compounds were isolated, and their structures were identified by UV, IR, NMR, MS, calculated ECD, and comparison with literature data. Compounds 1-4 were identified as new natural products, and other compounds were isolated from this fungus for the first time. A RAW264.7 macrophage model of lipopolysaccharide(LPS)-induced inflammation was used to evaluate the anti-inflammatory activities of all the compounds. The results showed that compound 6 exhibited a certain inhibitory effect on the production of nitric oxide in LPS-induced RAW264.7 cells, with an inhibition rate of 53.08%.
Monascus/chemistry*
;
Mice
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Nitric Oxide/immunology*
;
Oryza/metabolism*
;
Fermentation
6.Probable Molecular Targeting of Inhibitory Effect of Carvacrol-Loaded Bovine Serum Albumin Nanoparticles on Human Breast Adenocarcinoma Cells.
Pouria KHODAVANDI ; Neda KARAMI ; Alireza KHODAVANDI ; Fahimeh ALIZADEH ; Esmaeel Panahi KOKHDAN ; Ahmad ZAHERI
Chinese journal of integrative medicine 2025;31(4):336-346
OBJECTIVE:
To entrap carvacrol (CAR) in bovine serum albumin nanoparticles (BSANPs) to form CAR-loaded BSANPs (CAR@BSANPs) and to explore the anti-cancer effects in breast adenocarcinoma cells (MCF-7 cells) treated with CAR and CAR@BSANPs.
METHODS:
A desolvation method was used to synthesize BSANPs and CAR@BSANPs. The BSANPs and CAR@BSANPs were characterized by several physicochemical methods, including visual observation, high-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and high-performance liquid chromatography. MCF-7 cells were used and analyzed after 24 h of exposure to CAR and CAR@BSANPs at half-maximal inhibitory concentration. The anti-proliferative, apoptotic, reactive oxygen species (ROS), and nitric oxide (NO) scavenging activity as well as gene expression analysis were investigated by the cell viability assay, phase-contrast microscopy, 2',7'-dichlorofluorescein-diacetate assay, Griess-Illosvoy colorimetric assay, and quantitative real-time polymerase chain reaction, respectively.
RESULTS:
CAR and CAR@BSANPs showed anti-proliferative, apoptotic, ROS generation, and NO scavenging effects on MCF-7 cells. Expression profile of B-cell lymphoma 2-like 11 (BCL2L11), vascular endothelial growth factor A (VEGFA), hypoxia inducible factor factor-1α (HIF1A), BCL2L11/apoptosis regulator (BAX), and BCL2L11/Bcl2 homologous antagonist/killer 1 (BAK1) ratios revealed downregulated genes; and BAX, BAK1, and CASP8 were upregulated by CAR and CAR@BSANPs treatment. In vitro anticancer assays of the CAR and CAR@BSANPs showed that CAR@BSANPs demonstrated higher therapeutic efficacy in the MCF-7 cells than CAR.
CONCLUSIONS
CAR and CAR@BSANPs affect gene expression and may subsequently reduce the growth and proliferation of the MCF-7 cells. Molecular targeting of regulatory genes of the MCF-7 cells with CAR and CAR@BSANPs may be an effective therapeutic strategy against breast cancer.
Humans
;
Cymenes
;
Nanoparticles/ultrastructure*
;
MCF-7 Cells
;
Breast Neoplasms/genetics*
;
Apoptosis/drug effects*
;
Serum Albumin, Bovine/chemistry*
;
Monoterpenes/therapeutic use*
;
Adenocarcinoma/genetics*
;
Cell Proliferation/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Female
;
Cell Survival/drug effects*
;
Animals
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Nitric Oxide/metabolism*
;
Cattle
7.Tripterygium wilfordii attenuates acute lung injury by regulating the differentiation and function of myeloid-derived suppressor cells.
Lingyu WEI ; Shu TONG ; Meng'er WANG ; Hongzheng REN ; Jinsheng WANG
Journal of Central South University(Medical Sciences) 2025;50(5):840-850
OBJECTIVES:
Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. Tripterygium wilfordii (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases. This study aims to investigate the effects and underlying mechanisms of TW on myeloid-derived suppressor cells (MDSCs) in ALI, providing experimental evidence for TW as a potential adjuvant therapy for ALI.
METHODS:
Eighteen specific pathogen-free (SPF) C57BL/6 mice were randomly divided into normal control (NC; intranasal saline), lipopolysaccharide (LPS; 5 mg/kg intranasally to induce ALI), and LPS+TW (50 mg/kg TW by gavage on the first day of modeling, followed by 5 mg/kg LPS intranasally to induce ALI) groups (n=6 each). Lung injury and edema were assessed by histopathological scoring and wet-to-dry weight ratio. Cytokine levels [interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor-α (TNF-α)] in lung tissue lavage fluid were measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to assess the proportions of MDSCs, polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-MDSCs) in bone marrow, spleen, peripheral blood, and lung tissue, as well as reactive oxygen species (ROS) levels in lung tissues. Messenger RNA (mRNA) expression levels of inducible nitric oxide synthase (iNOS) and arginase-1 (ARG-1) in lung tissues were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). PMN-MDSCs sorted from the lungs of LPS-treated mice were co-cultured with splenic CD3+ T cells and divided into NC, triptolide (TPL)-L, and TPL-H groups, with bovine serum albumin, 25 nmol/L TPL, and 50 nmol/L TPL, respectively. Flow cytometry was used to detect the effect of PMN-MDSCs on T-cell proliferation, and RT-qPCR was used to measure iNOS and ARG-1 mRNA expression.
RESULTS:
Compared with the NC group, the LPS group showed marked lung pathology with significantly increased histopathological scores and wet-to-dry ratios (both P<0.001). TW treatment significantly alleviated lung injury and reduced both indices compared with the LPS group (both P<0.05). Cytokine levels were significantly decreased in the LPS+TW group compared with the LPS group (all P<0.001). The proportions of MDSCs in CD45+ cells from spleen, bone marrow, peripheral blood, and lung, as well as PMN-MDSCs from spleen, peripheral blood, and lung, were significantly reduced in the LPS+TW group compared with the LPS group (all P<0.05), accompanied by reduced ROS levels in lung tissues (P<0.001). iNOS and ARG-1 mRNA expression in lung tissues was significantly lower in the LPS+TW group than in the LPS group (both P<0.001). In vitro, compared with the TPL-L group, the TPL-H group showed significantly increased CD3+ T-cell proliferation (P<0.001), and decreased iNOS and ARG-1 mRNA expression (all P<0.05).
CONCLUSIONS
TW alleviates the progression of LPS-induced ALI in mice, potentially by reducing the proportion of MDSCs in lung tissues and attenuating the immunosuppressive function of PMN-MDSCs.
Animals
;
Acute Lung Injury/chemically induced*
;
Myeloid-Derived Suppressor Cells/cytology*
;
Tripterygium/chemistry*
;
Mice, Inbred C57BL
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/genetics*
;
Cytokines/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Diterpenes/pharmacology*
;
Epoxy Compounds
;
Phenanthrenes
8.Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp. HL-50 guided by molecular networking and their anti-inflammatory activity.
Chunxue YU ; Zixuan XIA ; Zhipeng XU ; Xiyang TANG ; Wenjuan DING ; Jihua WEI ; Danmei TIAN ; Bin WU ; Jinshan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):119-128
Guided by molecular networking, nine novel curvularin derivatives (1-9) and 16 known analogs (10-25) were isolated from the hydrothermal vent sediment fungus Penicillium sp. HL-50. Notably, compounds 5-7 represented a hybrid of curvularin and purine. The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction, electronic circular dichroism (ECD) calculations, 13C NMR calculation, modified Mosher's method, and chemical derivatization. Investigation of anti-inflammatory activities revealed that compounds 7-9, 11, 12, 14, 15, and 18 exhibited significant suppressive effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine macrophage RAW264.7 cells, with IC50 values ranging from 0.44 to 4.40 μmol·L-1. Furthermore, these bioactive compounds were found to suppress the expression of inflammation-related proteins, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), NLR family pyrin domain-containing protein 3 (NLRP3), and nuclear factor kappa-B (NF-κB). Additional studies demonstrated that the novel compound 7 possessed potent anti-inflammatory activity by inhibiting the transcription of inflammation-related genes, downregulating the expression of inflammation-related proteins, and inhibiting the release of inflammatory cytokines, indicating its potential application in the treatment of inflammatory diseases.
Penicillium/chemistry*
;
Mice
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Nitric Oxide/metabolism*
;
Hydrothermal Vents/microbiology*
;
Macrophages/immunology*
;
Molecular Structure
;
Nitric Oxide Synthase Type II/immunology*
;
Cyclooxygenase 2/immunology*
;
Geologic Sediments/microbiology*
;
NF-kappa B/immunology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
9.Ten new lignans with anti-inflammatory activities from the leaves of Illicium dunnianum.
Ting LI ; Xiaoqing HE ; Dabo PAN ; Xiaochun ZENG ; Siying ZENG ; Zhenzhong WANG ; Xinsheng YAO ; Wei XIAO ; Haibo LI ; Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):990-996
The anti-inflammatory phytochemical investigation of the leaves of Illicium dunnianum (I. dunnianum) resulted in the isolation of five pairs of new lignans (1-5), and 7 known analogs (6-12). The separation of enantiomer mixtures 1-5 to 1a/1b-5a/5b was achieved using a chiral column with acetonitrile-water mixtures as eluents. The planar structures of 1-2 were previously undescribed, and the chiral separation and absolute configurations of 3-5 were reported for the first time. Their structures were determined through comprehensive spectroscopic data analysis [nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass (HR-ESI-MS), infrared (IR), and ultraviolet (UV)] and quantum chemistry calculations (ECD). The new isolates were evaluated by measuring their inhibitory effect on NO in lipopolysaccharide (LPS)-stimulated BV-2 cells. Compounds 1a, 3a, 3b, and 5a demonstrated partial inhibition of NO production in a concentration-dependent manner. Western blot and real-time polymerase chain reaction (PCR) assays revealed that 1a down-regulated the messenger ribonucleic acid (mRNA) levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), COX-2, and iNOS and the protein expressions of COX-2 and iNOS. This research provides guidance and evidence for the further development and utilization of I. dunnianum.
Lignans/isolation & purification*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Molecular Structure
;
Plant Extracts/pharmacology*
;
Illicium/chemistry*
;
Cyclooxygenase 2/immunology*
;
Interleukin-6/immunology*
;
Nitric Oxide/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Lipopolysaccharides
10.One new galloyl derivative from Isodon henryi.
Yi-Xiao LI ; Jun CHI ; Zhi-Min WANG ; Li-Ping DAI
China Journal of Chinese Materia Medica 2024;49(21):5909-5913
Seven compounds(1-7) were isolated from Isodon henryi through silica gel, Sephadex LH-20, ODS, MCI column chromatography and semi-preparative HPLC. Their structures were identified as isogallicacid(1), caffeic acid(2), syringic acid(3), protocatechuic acid(4), oresbiusin A(5), lophanthoside A(6), and 8-hydroxypinoresinol(7), by spectroscopic techniques including HR-MS, IR, UV, NMR, and ECD. Compound 1 was a new galloyl derivative. Moreover, it demonstrated a significant inhibitory effect on the lipopolysaccharide-induced release of nitric oxide from RAW264.7 cells.
Mice
;
Animals
;
RAW 264.7 Cells
;
Nitric Oxide/metabolism*
;
Isodon/chemistry*
;
Molecular Structure
;
Drugs, Chinese Herbal/chemistry*
;
Macrophages/drug effects*
;
Magnetic Resonance Spectroscopy
;
Gallic Acid/analogs & derivatives*

Result Analysis
Print
Save
E-mail