1.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
2.Yinqiao Powder affects macrophage polarization-mediated herpes simplex keratitis through the cGAS-STING-IRF3 molecular pathway
Ning YAO ; Rongli ZHAO ; Xuemei YANG ; Yuhuan LIU ; Yaqin DING ; Yan DAI
International Eye Science 2025;25(8):1227-1233
AIM: To investigate the specific molecular mechanism of Yinqiao Powder in affecting macrophage polarization in herpes simplex keratitis(HSK)through the cyclic GMP-AMP synthetase(cGAS)-stimulator of interferon genes(STING)-interferon regulatory factor 3(IRF3)molecular pathway.METHODS:Human corneal epithelial cells(HCE-T)were divided into control, HSK, and HSK + Yinqiao Powder groups. M0 macrophages were grouped as Ctrl, HSV-1, HSV-1+oe-cGAS, HSV-1+Yinqiao Powder, and HSV-1+oe-cGAS+Yinqiao Powder. Conditional medium(CM)from each group of M0 macrophages was collected to intervene in HCE-T cells and divided into Ctrl-CM, HSV-1-CM, HSV-1+oe-cGAS-CM, and HSV-1+Yinqiao Powder-CM groups. Cell viability was detected by MTT assay, and apoptosis was detected by TUNEL assay. ELISA was used to detect the concentrations of Arg-1 and iNOS in cell supernatants, and Western blotting was used to detect the relative protein expressions of cGAS, STING, and IRF3. Balb/c mice were divided into control, model, and drug groups. The model and drug groups were inoculated with HSV-1 on the cornea of Balb/c mice using the corneal scratch method to construct an HSK mouse model, and the drug group was treated with Yinqiao Powder. The incidence and mortality of the three groups were compared on days 1, 3, 5, 7, and 14 after modeling.RESULTS:Compared with the control group, the HCE-T cell viability in the HSK group was decreased but apoptosis was increased, which was reversed by Yinqiao Powder intervention. Compared with the Ctrl group, the Arg-1 concentration in the cell supernatant of the HSV-1 group was decreased, the iNOS concentration was increased, and the protein expressions of cGAS, STING, and IRF3 were decreased. Compared with the HSV-1 group, the Arg-1 concentration was increased, the iNOS concentration was decreased, and the protein expressions of cGAS, STING, and IRF3 were enhanced in the HSV-1+oe-cGAS group and the HSV-1+Yinqiao Powder group, and the same results were obtained in the HSV-1+oe-cGAS+Yinqiao Powder group. Compared with the Ctrl-CM group, the HCE-T cell viability was decreased and apoptosis was increased in the HSV-1-CM group, which was reversed by overexpressing cGAS in macrophages or intervening with Yinqiao Powder. In vivo experiments found that Yinqiao Powder intervention could improve the pathological progression of keratitis.CONCLUSION:Yinqiao Powder inhibits M1 polarization of macrophages through the cGAS-STING-IRF3 molecular pathway, thereby delaying the progression of HSK.
3.Influencing factors and clinical treatment of severe complications after unilateral pneumonectomy in treating tuberculous destroyed lung
Xiao LI ; Ning WANG ; Lei BAO ; Zhiqiang WU ; Gang LI ; Cong CAI ; Yijie SONG ; Dan LI ; Banggui WU ; Liangshuang JIANG ; Xiaojun YAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):626-633
Objective To evaluate the surgical efficacy of unilateral pneumonectomy for the treatment of tuberculous destroyed lung, analyze the causes of severe postoperative complications, and explore clinical management strategies. Methods A retrospective analysis was conducted on the clinical data of patients with tuberculous destroyed lung who underwent unilateral pneumonectomy at the Public Health Clinical Center of Chengdu from 2017 to 2023. Postoperative severe complications were statistically analyzed. Patients were divided into a non-severe complication group and a severe-complication group, and the causes, management, and outcomes of complications were analyzed. Results A total of 134 patients were included, comprising 69 males and 65 females, with a mean age of 17-73 (40.43±12.69) years. There were 93 patients undergoing left pneumonectomy and 41 patients undergoing right pneumonectomy. Preoperative sputum smear was positive in 35 patients, all of which converted to negative postoperatively. There were 58 patients with hemoptysis preoperatively, and none experienced hemoptysis postoperatively. Postoperative incisional infection occurred in 8 (5.97%) patients, and postoperative pulmonary infection in 26 (19.40%) patients. Severe postoperative complications occurred in 17 (12.69%) patients, including empyema in 9 (6.72%) patients, bronchopleural fistula with empyema in 1 (0.75%) patient, severe pneumonia in 3 (2.24%) patients, postpneumonectomy syndrome in 1 (0.75%) patient, chylothorax in 1 (0.75%) patient, ketoacidosis in 1 (0.75%) patient, and heart failure with severe pneumonia in 1 (0.75%) patient. Perioperative mortality occurred in 2 (1.49%) patients, both of whom underwent right pneumonectomy. Multivariate logistic regression analysis revealed that a history of ipsilateral thoracic surgery, concomitant Aspergillus infection, and greater blood loss were independent risk factors for severe complications following unilateral pneumonectomy for tuberculous destroyed lung (P<0.05). Conclusion Unilateral pneumonectomy for patients with tuberculous destroyed lung can significantly improve the clinical cure rate, sputum conversion rate, and hemoptysis cessation rate. However, there is a certain risk of severe perioperative complications and mortality, requiring thorough perioperative management and appropriate management of postoperative complications.
4.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
5.Interpretation of WHO report 2020-2024: Global tuberculosis report and analysis of key data for China
Ning WANG ; Xixi FENG ; Sheng GONG ; Liangshuang JIANG ; Xiaojun YAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(09):1209-1215
Tuberculosis (TB) remains a major global public health threat. The World Health Organization (WHO) 2020–2024 global TB reports provide a comprehensive overview of the TB situation from 2019 to 2023. In 2023, TB re-emerged as the world's leading infectious killer, with an estimated 10.8 million new cases. While the growth in the incidence rate slowed, the number of deaths decreased to 1.25 million. The COVID-19 pandemic significantly disrupted TB control efforts in 2020–2021. As control measures are gradually restored, a positive trend in TB control is emerging. However, significant regional disparities in incidence persist, with eight high-burden countries, including India and China, accounting for over two-thirds of the global total. In 2023, global treatment coverage for drug-resistant TB (DR-TB) was 44.00% with a treatment success rate of 68.00%; yet, with 400 000 new drug-resistant cases, the control situation remains severe. China has achieved remarkable progress in TB control: new cases fell to 741 000 in 2023 (an incidence of 52 per 100 000); mortality decreased significantly; its share of the global DR-TB burden dropped from 14.00% to 7.30%; and the TB/HIV co-infection rate declined from 1.68% in 2019 to 0.66% in 2023, outperforming the global average. Globally, control measures continue to be optimized: treatment coverage increased from 70.00% in 2019 to 75.00% in 2023, the number of people receiving preventive therapy grew to 4.7 million, and rapid diagnostic coverage reached 48.00%. In China, the number of patients treated recovered to 565 000 in 2023, and rapid diagnostic coverage rose to 74.00%. Although technological innovations have enhanced the efficiency of prevention, screening, diagnosis, treatment, and management, achieving the 2030 End TB Strategy goals will require strengthening TB management, building primary healthcare capacity, and targeting interventions for high-risk populations, while balancing resource allocation with technological innovation to address the challenges of a heterogeneous global epidemic.
6.Effect of palmatine inhibiting migration,invasion and epithelial mesenchymal transformation in human oral cancer KB cells
Xue-Yun CHENG ; Guang-Yao HU ; Hong-Li LIU ; Chen-Guang LIU ; Yuan-Li DING ; Hui-Ning YANG ; Yi-An ZHAO ; Zhi-Guang SUN
The Chinese Journal of Clinical Pharmacology 2024;40(12):1749-1753
Objective To investigate the effects of palmatine on migration,invasion and epithelial mesenchymal transformation(EMT)in human oral cancer KB cells.Methods KB cells were divided into control group and palmatine-L,-M,-H groups,cultured with 0,4,8 and 16 μmol·L-1 palmatine.After incubation for 48 h,scratch assay was used to detect migration;Traswell assay was used to detect invasion;matrix metalloproteinase 2(MMP-2),MMP-9 and fibronectin(FN)contents were detected by enzyme-linked immunosorbent assay;the expression of Vimentin,N-cadherin and E-cadherin mRNA were detected by real-time quantitative polymerase chain reaction;the expression of Vimentin,N-cadherin,E-cadherin,Wnt3 and β-catenin protein were detected by Western blot.Results Cell mobility in control group and palmatine-L,-M,-H groups were(69.27±8.62)%,(52.94±4.49)%,(45.22±5.05)%and(37.63±4.88)%;the number of transmembrane cells were 197.33±20.26,125.33±12.01,97.00±9.17 and 62.67±7.51;the content of MMP-2 were(2.93±0.21),(1.49±0.13),(1.16±0.15)and(0.95±0.09)ng·mL-1;the content of MMP-9 were(3.51±0.36),(2.37±0.23),(2.06±0.35)and(1.72±0.16)ng·mL-1;the content of FN were(41.28±4.02),(24.03±3.17),(20.67±2.63)and(13.82±2.19)ng·mL-1;the above indexes in palmatine-L,-M,-H groups were compared with the control group,and the differences were statistically significant(P<0.05,P<0.01).The mRNA and protein expressions of Vimentin,N-cadherin and E-cadherin,and the expressions of Wnt3 and β-catenin protein in palmatine-L,-M,-H groups were statistically significant compared with those in control group(P<0.05,P<0.01).Conclusion Palmatine can inhibit the migration,invasion and EMT of human oral cancer KB cells,and its mechanism is related to the regulation of Wnt/β-catenin signaling pathway.
7.Effects of stress-induced protein Sestrin2 on necroptosis of dendritic cells induced by lipopolysaccharide
Mengyao WU ; Renqi YAO ; Yu DUAN ; Lu WANG ; Liyu ZHENG ; Pengyi HE ; Ning DONG ; Yao WU ; Yongming YAO
Chinese Critical Care Medicine 2024;36(3):237-243
Objective:To investigate the effect of stress-induced protein Sestrin2 (SESN2) on necroptosis of mouse dendritic cell (DC) induced by lipopolysaccharide (LPS) combined with zVAD, a panaspartate-specific cysteine protease (caspase) inhibitor.Methods:The DC2.4 cell line derived from the bone marrow of mouse in the 3rd to 10th generations was cultured. The cells were stimulated with LPS for 0 hour, 6 hours, 12 hours, and 24 hours, and grouped according to the stimulation time points. Western blotting was performed to determine the protein expression of SESN2 in each group. Overexpression empty lentivirus (NC), SESN2 gene overexpression RNA sequence lentivirus (SESN2 LV-RNA), small interfering empty lentivirus (NS), and SESN2 gene small interfering RNA sequence lentivirus (SESN2 siRNA) were transfected into DC2.4 cells. After 72 hours of transfection, cell fluorescence expression was observed under the inverted fluorescence microscope. Cells in each transfection group were stimulated with LPS for 24 hours. The blank control groups were set up and cultured with phosphate buffered saline (PBS) for 24 hours. Western blotting was performed to measure SESN2 protein expression. In the same groups as above, cells were stimulated with LPS+zVAD for 24 hours. The blank control groups were set up and cultured with PBS for 24 hours. Western blotting was used to determine the expression of mixed lineage kinase domain-like protein (MLKL) and phosphorylated-MLKL (p-MLKL). The p-MLKL levels and the number of positive cells were observed using laser scanning confocal microscopy. The necroptotic cell ratios were assessed by both flow cytometry and Hoechst staining.Results:Compared to the LPS 0 hour group, the expression of SESN2 in the LPS 24 hours group showed a significant increase. Therefore, 24 hours was chosen as the subsequent stimulation time point. After successful lentivirus transduction and 24 hours of cultivation, the MLKL phosphorylation level in the SESN2 siRNA+LPS+zVAD group was significantly higher than that in the NS+LPS+zVAD group. The MLKL phosphorylation in the SESN2 LV-RNA+LPS+zVAD group was significantly lower than that in the NC+LPS+zVAD group. The MLKL phosphorylation levels in both the NS+LPS+zVAD group and the NC+LPS+zVAD group were obviously higher than those in the NS+PBS group and the NC+PBS group, respectively. Laser scanning confocal microscopy showed that the trends in quantity and fluorescence intensity of p-MLKL protein expressions were consistent with the above results. The results from flow cytometry analysis and Hoechst staining showed that the rates of cell necrotic apoptosis in SESN2 siRNA+LPS+zVAD group were significantly higher than those in NS+LPS+zVAD group [flow cytometry analysis: (30.800±1.153)% vs. (20.800±1.114)%, Hoechst staining: (75.267±0.451)% vs. (46.267±3.371)%, both P < 0.05], indicating that knocking down SESN2 further exacerbated the occurrence of necroptosis. The necrotic apoptosis rates in SESN2 LV-RNA+LPS+zVAD group were significantly lower than those in NC+LPS+zVAD group [flow cytometry analysis: (7.160±0.669)% vs. (19.240±2.322)%, Hoechst staining: (32.433±3.113)% vs. (48.567±4.128)%, both P < 0.05], indicating that overexpressing SESN2 reversed such response and markedly reduced the proportion of necroptotic cells compared to the corresponding empty vector group. Conclusion:SESN2 exhibits an inhibitory effect on necroptosis of DC in sepsis. Targeted SESN2 expression may regulate the process of DC-mediated immune response in sepsis.
8.Pathologic Function of Cyclin-dependent Kinase 5 and Its Relationship With Exercise
Dan JIN ; Rui-Qi HUANG ; Ting-Ting YAO ; Xue-Jie YI ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(11):2868-2879
Cyclin-dependent kinases (CDKs) are proline-induced serine/threonine kinases that are primarily involved in the regulation of cell cycle, gene transcription, and cell differentiation. In general, CDKs are activated by binding to specific regulatory subunits of cell cycle proteins and are regulated by phosphorylation of specific T-loops by CDK activated kinases. In the CDKs family, cyclin-dependent kinase 5 (CDK5) is a specialized member whose activity is triggered only by interaction with p35 and p39, which do not have the same sequence as the cell cycle proteins, and this may be one reason why CDK5 is distinguished from other CDK members by its structural and functional differences. In addition, unlike most CDK members that require phosphorylation at specific sites to function, CDK5 does not require such phosphorylation, and it can be activated simply by binding to p35 and p39. More notably, inhibitors that are commonly used to inhibit the activity of other CDK members have almost zero effect on CDK5. In contrast, CDK5, as a unique CDK family member, plays an important role in the development of numerous diseases. In metabolic diseases, elevated CDK5 expression leads to decreased insulin secretion, increased foam cell formation and triggers decreased bone mass in the body, thus accelerating metabolic diseases, and the role of CDK5 in bone biology is gradually gaining attention, and the role of CDK5 in bone metabolic diseases may become a hotspot for research in the future; in neurodegenerative diseases, hyperphosphorylation of Tau protein is an important hallmark of Alzheimer’s disease development, and changes in CDK5 expression are associated with Tau protein phosphorylation and nerve death, indicating that CDK5 is highly related to the development of the nervous system; in tumor diseases, the role of CDK5 in the proliferation, differentiation and migration and invasion of tumor cells marks the development of tumorigenesis, but different researchers hold different views, and further studies are needed in the follow-up. Therefore, the study of its mechanism of action in diseases can help to reveal the pathogenesis and pathological process of diseases. Appropriate exercise not only helps in the prevention of diseases, but also plays a positive role in the treatment of diseases. Exercise-induced mechanical stress can improve bone microstructure and increase bone mass in osteoporosis patients. In addition, exercise can effectively inhibit neuronal apoptosis and improve mitochondrial dysfunction, more importantly, appropriate exercise can inhibit the proliferation of cancer cells to a certain extent. It can be seen that exercise occupies a pivotal position in the prevention and treatment of pathologic diseases. It has been shown that exercise can reduce the expression of CDK5 and affect the pathological process of neurological diseases. Currently, there is a dearth of research on the specific mechanisms of CDK5’s role in improving disease outcomes through exercise. In order to understand its effects more comprehensively, subsequent studies need to employ diverse exercise modalities, targeting patients with various types of diseases or corresponding animal models for in-depth exploration. This article focuses on the pathological functions of CDK5 and its relationship with exercise, with a view to providing new insights into the prevention and treatment of disease by CDK5.
9.Taking "Seven Emotions Scale" as an Example to Explore the Suitability of Four Qualitative Methods in the Development of TCM Scale
Simeng YAO ; Xiaoying NING ; Qinyong XU ; Yuanfang CHEN ; Wei ZHENG ; Jihong LIU ; Fengbin LIU ; Zhengkun HOU
Journal of Traditional Chinese Medicine 2024;65(20):2102-2108
ObjectiveTo explore the suitability of four qualitative research methods in the development of TCM scale. MethodsTaking the development of "Seven Emotions Scale" as an example, we conducted semi-structured interviews with 31 patients of emotional disorders and 10 healthy people by objective sampling, and collected psychological feelings and emotional cognition data related to seven emotions according to the interview outline. Two qualitative methods, descriptive qualitative research and descriptive phenomenology, were used to analyze the data and construct the item library of the scale. The conceptual framework of the scale was constructed by using commonly used grounded theory and frame analysis. ResultsDuring data analysis, it is found that the themes extracted from descriptive phenomenology were not easily understood by the interviewees, and it is difficult for the researchers to truly achieve the "suspension" required by phenomenology. Considering the feasibility and convenience of the researchers' actual operation, as well as whether the initial purpose of the scale research can be intuitively included in the interviewees' views and feelings, descriptive phenomenology is not suitable for the formation of scale items. Using descriptive qualitative research method to analyze the interview data of healthy people and patients with emotional disorders, 306 and 476 scale items were obtained respectively. Through grounded theory, five selective codes were obtained: physical symptoms, external manifestations, psychological feelings, behaviors and emotional control. Using frame analysis, four themes including physical symptoms, psychological feelings, behavior and emotional cognition were constructed. Both methods can be used to construct the conceptual frame of scale, but the framework analysis is more convenient and can better ensure the transparency of the research. ConclusionDescriptive qualitative research methods can be used to form the item library of TCM scales. Framework analysis is more suitable for the construction of the conceptual framework of the scale than grounded theory, while descriptive phenomenology is not suitable for the development of TCM scales.
10.Study of glycosides from Piper sintenense Hatusima
Penghuang TU ; Zhiren YAO ; Meiling JIN ; Guanyu NING ; Yaping HUANG ; Ke PAN ; Zhiqi YIN
Journal of China Pharmaceutical University 2024;55(2):202-208
In order to investigate the chemical constituents of glycosides in Piper sintenense Hatusima, column chromatographic techniques such as silica gel, ODS, MCI GEL CHP20P, Sephadex LH-20, and semi-preparative high performance liquid chromatography were used to afford nine glycosides from the n-butanol part of the 95% ethanol extract of Piper sintenense Hatusima. Based on the physicochemical properties and NMR data, the above compounds were identified as (2S)-2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone-2-O-β-D-glucopyranoside (1), 2-phenylethyl β-D-glucopyranoside (2), benzyl α-L-arabinopyranosyl-(1''→6')-β-D-glucopyranoside (3), benzyl β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (4), phenethyl β-D-apiofuranosyl-(1''→ 2')-β-D-glucopyranoside(5), salidroside (6), phenethanol β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (7), (Z)-hexenyl-O-α-L-arabinopyranosyl-(1''→6')-O-β-D-glucopyranoside (8), (Z)-hexenyl-O-β-D-xylopyanosyl-(1''→6')-O-β-D-glucopyranoside (9). Compound 1 was identified as a new compound, and compounds 3-9 were isolated from the genus Piper for the first time.

Result Analysis
Print
Save
E-mail