1.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
2.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
3.Multi-organ inflammatory phenotypes and transcriptomic characterization in an inflammation-driven mouse model of preeclampsia induced by LPS.
Ning WANG ; Jing-Qiu FENG ; Ying XIE ; Meng-Can SUN ; Qi WANG ; Zhe WANG ; Lu GAO
Acta Physiologica Sinica 2025;77(5):775-791
Preeclampsia (PE) is a severe gestational disorder characterized by hypertension and proteinuria, with a subset of cases exhibiting an immune-driven phenotype marked by placental overexpression of proinflammatory cytokines and chronic inflammatory damage, profoundly impacting fetal development. To elucidate the pathophysiology of this PE subtype, we established an inflammation-driven PE mouse model via lipopolysaccharide (LPS) intraperitoneal injection, systematically evaluating histopathological changes in maternal heart, liver, lung, kidney, and placenta, and integrating transcriptomic profiling to uncover molecular mechanisms. LPS administration robustly induced maternal hypertension and proteinuria, hallmarks of PE, without significantly altering organ or fetal weights. Histological analyses revealed pronounced inflammatory damage in the maternal lung, kidney, and placenta, with the lung exhibiting the most severe pathology, characterized by inflammatory cell infiltration, alveolar wall thickening, and interstitial edema-challenging the conventional focus on placental and renal primacy in PE. Placental labyrinth and junctional zones displayed extensive structural disruption and necrosis, indicating functional impairment. Transcriptomic analysis identified 27 inflammation-related genes consistently upregulated across tissues, with protein-protein interaction networks pinpointing Il1β, Il6, Ccl5, Ccl2, Cxcl10, Tlr2, and Icam1 as hub genes. Quantitative PCR validation confirmed Tlr2 as a central regulator, evidenced by significant upregulation of Tlr2 in lung, kidney, and placenta of LPS-induced PE mice, while Cxcl10 exhibited placenta-specific upregulation, suggesting a synergistic inflammatory axis in placental pathology. These findings highlight the lung as a critical, yet underappreciated, target in inflammation-driven PE, reframe the multi-organ inflammatory landscape of the disease, and nominate Tlr2 and Cxcl10 as potential diagnostic biomarkers and therapeutic targets, offering new avenues for precision intervention in PE.
Animals
;
Female
;
Pregnancy
;
Mice
;
Pre-Eclampsia/genetics*
;
Inflammation
;
Lipopolysaccharides/adverse effects*
;
Disease Models, Animal
;
Transcriptome
;
Placenta/pathology*
;
Phenotype
4.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
5.Study on the effect of postoperative implant fusion after anterior cervical discectomy and fusion by applying nano-hydroxyapatite/collagen composite in patients with low bone mass cervical spondylosis.
Shi-Bo ZHOU ; Xing YU ; Ning-Ning FENG ; Zi-Ye QIU ; Yu-Kun MA ; Yang XIONG
China Journal of Orthopaedics and Traumatology 2025;38(8):800-809
OBJECTIVE:
To explore the effect of nano-hydroxyapatite/collagen composite (nHAC) on bone graft fusion after anterior cervical discectomy and fusion (ACDF) in patients with cervical spondylosis and low bone mass.
METHODS:
A retrospective analysis was conducted on 47 patients with low bone mass who underwent ACDF from 2017 to 2021. They were divided into the nHAC group and the allogeneic bone group according to different bone graft materials. The nHAC group included 26 cases, with 8 males and 18 females;aged 50 to 78 years old with an average of (62.81±7.79) years old;the CT value of C2-C7 vertebrae was (264.16±36.33) HU. The allogeneic bone group included 21 cases, with 9 males and 12 females;aged 54 to 75 years old with an average of (65.95±6.58) years old;the CT value of C2-C7 vertebrae was (272.39±40.44) HU. The visual analogue scale (VAS), neck disability index (NDI), and Japanese Orthopaedic Association (JOA) spinal cord function score were compared before surgery, 1 week after surgery, and at the last follow-up to evaluate the clinical efficacy. Imaging assessment included C2-C7 Cobb angle, surgical segment height, intervertebral fusion, and whether the cage subsidence occurred at 1 week after surgery and the last follow-up.
RESULTS:
The follow-up duration ranged from 26 to 39 months with an average of (33.27±3.34) months in the nHAC group and 26 to 41 months with an average of (31.86±3.57) months in the allogeneic bone group. At 1 week after surgery and the last follow-up, the VAS, NDI scores, and JOA scores in both groups were significantly improved compared with those before surgery, with statistically significant differences (P<0.05). At 1 week after surgery, the C2-C7 Cobb angles in the nHAC group and the allogeneic bone group were (14.26±10.32)° and (14.28±8.20)° respectively, which were significantly different from those before surgery (P<0.05). At the last follow-up, the C2-C7 Cobb angles in both groups were smaller than those at 1 week after surgery, with statistically significant differences (P<0.05). At 1 week after surgery, the height of the surgical segment in the nHAC group was (31.65±2.55) mm, and that in the allogeneic bone group was (33.63±3.26) mm, which were significantly different from those before surgery (P<0.05). At the last follow-up, the height of the surgical segment in both groups decreased compared with that at 1 week after surgery, with statistically significant differences (P<0.05). At the last follow-up, 39 surgical segments were fused and 6 cages subsided in the nHAC group;40 surgical segments were fused and 7 cages subsided in the allogeneic bone group;there was no statistically significant difference between the two groups (P>0.05). Compared with the CT value of vertebrae without cage subsidence, the CT value of vertebrae with cage subsidence in both groups was significantly lower, with a statistically significant difference (P<0.05).
CONCLUSION
The application of nHAC in ACDF for patients with low bone mass can achieve effective fusion of the surgical segment. There is no significant difference in improving clinical efficacy, intervertebral fusion, and cage subsidence compared with the allogeneic bone group. With the extension of follow-up time, the C2-C7 Cobb angle decreases, the height of the surgical segment is lost, and the cage subsides in both the nHAC group and the allogeneic bone group, which may be related to low bone mass. Low bone mass may be one of the risk factors for cervical spine sequence changes, surgical segment height loss, and cage subsidence after ACDF.
Humans
;
Male
;
Female
;
Middle Aged
;
Spondylosis/physiopathology*
;
Spinal Fusion/methods*
;
Cervical Vertebrae/surgery*
;
Aged
;
Diskectomy
;
Durapatite
;
Retrospective Studies
;
Collagen/chemistry*
6.Nonsurgical Treatment of Chronic Subdural Hematoma Patients with Chinese Medicine: Case Report Series.
Kang-Ning LI ; Wei-Ming LIU ; Ying-Zhi HOU ; Run-Fa TIAN ; Shuo ZHANG ; Liang WU ; Long XU ; Jia-Ji QIU ; Yan-Ping TONG ; Tao YANG ; Yong-Ping FAN
Chinese journal of integrative medicine 2025;31(10):937-941
7.Kitchen Ventilation Attenuate the Association of Solid Fuel Use with Sarcopenia: A Cross-Sectional and Prospective Study.
Ying Hao YUCHI ; Wei LIAO ; Jia QIU ; Rui Ying LI ; Ning KANG ; Xiao Tian LIU ; Wen Qian HUO ; Zhen Xing MAO ; Jian HOU ; Lei ZHANG ; Chong Jian WANG
Biomedical and Environmental Sciences 2025;38(4):511-515
8.Excavation and evaluation of tocilizumab and infliximab for adverse drug event signals among children
Yue TAN ; Ning-Ning GE ; Jing PENG ; Wen-Shuang QIU ; Xin ZHANG ; Lan-Fang LI
The Chinese Journal of Clinical Pharmacology 2024;40(5):732-736
Objective To analyze the risk of adverse drug events in pediatric clinical applications of tocilizumab versus inflixima.Methods Adverse event(AE)reporting data for tocilizumab versus infliximab in the U.S.Food and Drug Administration Adverse Event Reporting System database for the pediatric population from Q1 2013 to Q1 2023 were collected.AE risk signal mining was performed using the reporting odds ratio(ROR)method and the proportional reporting ratio(PRR)method.AEs were also classified and statistically analyzed according to the preferred system organ classification and preferred terminology(PT)of the International Dictionary of Medical Terminology.Results Data were extracted and cleaned to include 1 052 AE reports with 198 positive PT signals for tocilizumab as the suspected drug and 9 1 39 AE reports with 387 positive PT signals for infliximab as the suspected drug.The analyses suggested that the stronger positive risk signals for both drugs were focused on gastrointestinal disorders,infectious and invasive diseases,laboratory tests,musculoskeletal and connective tissue disorders,and blood,vascular,and lymphatic disorders.The risk signals for infliximab were focused on gastrointestinal disorders,infections,and infectious diseases,while the risk signals for tocilizumab were focused on the musculoskeletal muscle system.Conclusion Clinical use of both drugs in children has multi-system effects,tocilizumab may have effects on growth and development,and infliximab has effects on the gastrointestinal tract in children.
9.Effectiveness of three electronic fetal monitoring systems in identifying neonatal acidosis during labor
Lili QIU ; Huilian HU ; Ling YANG ; Ning GU ; Zhenhua ZHU ; Jing FANG ; Yan ZHOU ; Yimin DAI
Chinese Journal of Perinatal Medicine 2024;27(5):362-370
Objective:To analyze the effectiveness and interobserver agreement of the Parer five-tier, the National Institute of Child Health and Human Development (NICHD) three-tier, and the International Federation of Gynecology and Obstetrics (FIGO) three-tier electronic fetal monitoring (EFM) systems in identification of neonatal acidosis during labor.Methods:This retrospective study was conducted on full-term singleton cephalic deliveries with neonatal acidosis (umbilical artery blood gas pH≤7.1) and normal newborns (umbilical artery blood gas pH≥7.2) in the Nanjing Drum Tower Hospital, Nanjing University Medical School from January to December 2020. EFM tracings during the last 30-60 min before delivery were collected. Four obstetricians independently described the features of randomly sorted and coded EFM tracings. Another obstetrician categorized these tracings using the NICHD three-tier, FIGO three-tier, and Parer five-tier evaluation systems based on the features. All researchers were masked to the clinical characteristics and maternal and neonatal outcomes. The sensitivity and specificity for identifying neonatal acidosis, as well as the interobserver agreement, were analyzed for all three systems. Independent sample t-test, Chi-square (or Fisher's exact test) and Mann-Whitney U tests were used for statistical analysis. Inter-group comparisons of sensitivity and specificity between the three evaluation systems were assessed using McNemar's test. The Kappa statistic was used to analyze interobserver agreement. Results:This study included a total of 3 558 cases. After propensity score matching, there were 44 cases of neonatal acidosis and 78 control cases. There were no significant differences in parity, gestational weeks, modes of delivery, placental abruption, or analgesia rates between the two groups. The rates of instrumental vaginal delivery and neonatal intensive care unit (NICU) admission in the acidosis group were significantly higher than those in the control group [15.8% (7/44) vs. 2.6% (2/78), χ2=8.45, P=0.003; 31.8% (14/44) vs. 12.8% (10/78), χ2=8.45, P=0.004], while the umbilical artery blood pH and mean base excess were lower in the acidosis group than in the control group [7.04±0.07 vs. 7.30±0.05, t=4.98; (-12.40±3.32) vs. (-5.64±1.95) mmol/L, t=13.61; both P<0.001]. (2) Using the NICHD three-tier system, 95.5% (42/44) of the acidosis cases and 89.7% (70/78) of the control cases were classified as having category Ⅱ EFM tracings, indicating potential fetal acid-base imbalance; category Ⅲ EFM tracings were only observed in 4.5% (2/44) of the cases in the acidosis group. With the FIGO three-tier system, 81.8% (36/44) of the acidosis cases were categorized as having "pathological" tracings, and with the Parer five-tier system, 86.4% (38/44) of the acidosis cases were correctly classified into the "orange or red" risk zones that indicated acid-base imbalance. Among the control cases, there were 28.2% (22/78) with EFM tracings of "normal patterns" categorized by the FIGO three-tier system, and 41.0% (32/78) classified into the "green or blue" risk zones by the Parer five-tier system, which indicated good fetal conditions. None of the acidosis cases were misdiagnosed as being normal by the Parer five-tier system. (3) Compared with the NICHD three-tier system, both the FIGO three-tier and the Parer five-tier systems showed increased diagnostic sensitivity [4.5% (1.2%- 14.5%) vs. 81.8% (66.8%-89.4%) and 86.4% (71.8%-92.4%)], but decreased specificity [100.0% (95.3%- 100.0%) vs. 87.2% (78.0%-92.9%) and 84.6% (75.0%-91.0%)]. There was no statistically significant difference in the sensitivity or specificity between the FIGO three-tier and Parer five-tier systems for identifying neonatal acidosis ( P=0.727 and 0.791). (4) When reading the tracings of control cases, the total agreement rate for the NICHD three-tier system by different observers was as high as 94.2%, while the total agreement rates for the FIGO three-tier and Parer five-tier systems were 69.7% and 67.7%, respectively. In the interpretation of EFHR tracings for acidosis cases, the interobserver agreement for the Parer five-tier system was excellent [Kappa (95% CI): 0.87 (0.79-0.95)], while both the NICHD three-tier and FIGO three-tier systems showed good agreement [Kappa (95% CI): 0.77 (0.66-0.88) and 0.72 (0.60-0.84)]. Conclusions:The Parer five-tier and the FIGO three-tier systems have higher sensitivity in identifying neonatal acidosis than the NICHD three-tier system, and the Parer five-tier system achieves a higher negative predictive value and a greater agreement in the interpretation of pathological EFM patterns.
10.Analysis of WHO Global Patient Safety Report 2024 and related medical device issues
Zhiyong LI ; Ying ZHANG ; Zeshi CUI ; Wei SONG ; Xiaorui ZHAO ; Peng NING ; Xiaolan QIU ; Zixin KANG
China Medical Equipment 2024;21(8):198-204
Based on the perspective of medical equipment safety culture,analyze the Global Patient Safety Report 2024 released by the World Health Organization(WHO)on May 30,and extract patient safety elements related to medical devices.Propose to initiate action plan for patient safety related to medical devices and discuss the pathway and measures to further ensure patient safety and strengthen safety management in the clinical use of medical devices,in conjunction with promoting high-quality development of hospitals.

Result Analysis
Print
Save
E-mail