1.A bibliometric and visual analysis of the literature published in the journal of Organ Transplantation since its inception
Xi CAO ; Tao HUANG ; Qiwei YANG ; Lin YU ; Xiaowen WANG ; Wenfeng ZHU ; Haoqi CHEN ; Ning FAN ; Genshu WANG
Organ Transplantation 2026;17(1):133-142
Objective To systematically analyze the literature characteristics of Journal of Organ Transplantation since its inception. Methods Using the China National Knowledge Infrastructure (CNKI) academic journal full-text database as the data source, all articles published in the Journal of Organ Transplantation from January 2010 to August 2025 were retrieved. After excluding non-academic papers, a total of 1 568 research papers were included. R language 4.3.0, Bibliometrix package 3.2.1, and Citespace software were used to analyze the number of publications, publishing institutions, authors, keywords and other aspects. Results The number of publications in Journal of Organ Transplantation increased from an average of 82 articles per year in the early years after its inception to 113 articles per year in recent years, a growth of 37.8%. The geographical distribution of publishing institutions covers 32 provinces, cities and autonomous regions nationwide, mainly concentrated in the South China, East China and North China regions, and has now basically covered the central and western regions in recent years. The author collaboration network includes 45 authors distributed across 7 major collaboration clusters, forming a stable multi-level national research system centered on key university-affiliated hospitals. The high-frequency keywords are dominated by "liver transplantation" (425 times) and "kidney transplantation" (396 times). The theme evolution shows a clear three-stage characteristic: initially focusing on clinical technology application, deepening to immune mechanism exploration in the middle stage, and recently (since 2022) focusing on cutting-edge research areas such as xenotransplantation. Conclusions Journal of Organ Transplantation has witnessed the rapid development of China's organ transplantation cause, fully reflecting the research status and trends in China's organ transplantation field, and has provided an important platform for the future development and international cooperation in China's organ transplantation field.
2.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
3.Dynamic immunological characteristics in acute rejection model of cervical heterotopic heart transplantation in mice
Xi CAO ; Tao HUANG ; Jiwei YANG ; Xiaowen WANG ; Wenfeng ZHU ; Haoqi CHEN ; Ning FAN ; Genshu WANG
Organ Transplantation 2025;16(2):256-263
Objective To establish an acute rejection model of cervical heart transplantation in mice and evaluate the survival and dynamic rejection process post-transplantation. Methods Mice were randomly divided into sham operation group (n=10), syngeneic transplantation group (n=21), and allogeneic transplantation group (n=65). Sham operation, syngeneic cervical heart transplantation, and allogeneic cervical heart transplantation were performed respectively. The survival of recipient mice and grafts, histopathological changes of graft tissues, subpopulations of splenic lymphocytes, and expression of inflammatory factors in serum and grafts were observed. Results The survival rate and graft survival rate of the sham operation group and syngeneic transplantation group were 100% at 7 days after surgery. In the allogeneic transplantation group, 5 cases failed and died on the first day after surgery. The survival rate at 7 days after surgery was 86%, and all surviving mice had grafts that stopped beating at 7 days after surgery. The allogeneic transplantation group showed significant rejection at 7 days after surgery, accompanied by tissue damage and CD8+ T cell infiltration. The proportion of CD8+ T cells in the spleen continued to rise post-operation, while the proportion of CD4+ T cells showed a downward trend. The expression of interferon-γ in serum and grafts peaked at 5 days after surgery, while the expression of tumor necrosis factor-α showed no statistical significance. Conclusions Acute rejection following heart transplantation in mice intensifies between 5 to 7 days after surgery, which may be a critical time window for immunological intervention.
4.Components and Brain-protective Effect of Chuanxiong Rhizoma-Paeoniae Radix Rubra in Improving Ischemic Stroke Based on UPLC-Q-TOF-MS
Qizhong JIN ; Jie ZHANG ; Lijuan XIU ; Fan XU ; Lei WANG ; Ning WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):20-29
ObjectiveTo investigate the chemical constituents of Chuanxiong Rhizoma-Paeoniae Radix Rubra(CRPRR) that cross the blood-brain barrier in rats with ischemic stroke, their brain-protective effects, and their impact on inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and pharmacodynamic experiments. MethodsA focal cerebral ischemia-reperfusion injury model was established in rats via the middle cerebral artery occlusion/reperfusion (MCAO/R) method using intraluminal suture. Neurological function was evaluated using behavioral scoring. UPLC-Q-TOF-MS was employed to identify the chemical constituents of CRPRR that crossed the blood-brain barrier and entered the cerebrospinal fluid in MCAO/R model rats. Male Sprague-Dawley rats were randomly divided into six groups: sham operation group, model group, low-, medium-, and high-dose CRPRR groups (1.35, 2.7, 5.4 g·kg-1, respectively), and an edaravone group (5 mg·kg-1), with 12 rats in each group. The sham and model groups received normal saline, while the treatment groups received the respective doses of CRPRR once daily by gavage for three consecutive weeks. The brain-protective effects of CRPRR were assessed using the Longa five-point scoring method, open field test, Morris water maze, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (HE) staining, and transmission electron microscopy. ResultsNine chemical constituents were identified in the cerebrospinal fluid containing CRPRR, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide. Animal experiment results showed that compared with the sham operation group, the model group exhibited disordered neuronal arrangement, severe vacuolation, nuclear pyknosis, and evident mitochondrial swelling. Chromatin aggregation and peripheralization were also observed. Neurological scores and the number of crossings in the central region were significantly increased (P<0.01), while platform crossings were significantly decreased (P<0.01), and clear infarct areas were present (P<0.01). Serum levels and protein expression of TNF-α, IL-1β, and IL-18 were significantly elevated (P<0.01). Compared with the model group, all dose groups of CRPRR showed marked improvement in neuronal morphology which was close to the normal level, with mitochondrial swelling alleviated and chromatin distribution more uniform. The medium- and high-dose groups significantly reduced neurological scores (P<0.01), while the low-, medium-, and high-dose groups significantly reduced the number of central crossings (P<0.01) and infarct volume (P<0.01), and decreased TNF-α, IL-1β, and IL-18 levels (P<0.05, P<0.01) compared with the model group. Furthermore, the medium- and high-dose groups significantly reduced TNF-α protein expression (P<0.05,P<0.01), and the high-dose group significantly reduced IL-1β and IL-18 protein expression (P<0.01). ConclusionThis study confirmed that CRPRR improves neurological function and alleviates brain tissue damage in MCAO/R rats. Its mechanism may be associated with the downregulation of inflammatory factors TNF-α, IL-1β, and IL-18, as well as the presence of nine active chemical constituents in cerebrospinal fluid, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide, which are closely related to their brain-protective effects.
5.Components and Brain-protective Effect of Chuanxiong Rhizoma-Paeoniae Radix Rubra in Improving Ischemic Stroke Based on UPLC-Q-TOF-MS
Qizhong JIN ; Jie ZHANG ; Lijuan XIU ; Fan XU ; Lei WANG ; Ning WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):20-29
ObjectiveTo investigate the chemical constituents of Chuanxiong Rhizoma-Paeoniae Radix Rubra(CRPRR) that cross the blood-brain barrier in rats with ischemic stroke, their brain-protective effects, and their impact on inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and pharmacodynamic experiments. MethodsA focal cerebral ischemia-reperfusion injury model was established in rats via the middle cerebral artery occlusion/reperfusion (MCAO/R) method using intraluminal suture. Neurological function was evaluated using behavioral scoring. UPLC-Q-TOF-MS was employed to identify the chemical constituents of CRPRR that crossed the blood-brain barrier and entered the cerebrospinal fluid in MCAO/R model rats. Male Sprague-Dawley rats were randomly divided into six groups: sham operation group, model group, low-, medium-, and high-dose CRPRR groups (1.35, 2.7, 5.4 g·kg-1, respectively), and an edaravone group (5 mg·kg-1), with 12 rats in each group. The sham and model groups received normal saline, while the treatment groups received the respective doses of CRPRR once daily by gavage for three consecutive weeks. The brain-protective effects of CRPRR were assessed using the Longa five-point scoring method, open field test, Morris water maze, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (HE) staining, and transmission electron microscopy. ResultsNine chemical constituents were identified in the cerebrospinal fluid containing CRPRR, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide. Animal experiment results showed that compared with the sham operation group, the model group exhibited disordered neuronal arrangement, severe vacuolation, nuclear pyknosis, and evident mitochondrial swelling. Chromatin aggregation and peripheralization were also observed. Neurological scores and the number of crossings in the central region were significantly increased (P<0.01), while platform crossings were significantly decreased (P<0.01), and clear infarct areas were present (P<0.01). Serum levels and protein expression of TNF-α, IL-1β, and IL-18 were significantly elevated (P<0.01). Compared with the model group, all dose groups of CRPRR showed marked improvement in neuronal morphology which was close to the normal level, with mitochondrial swelling alleviated and chromatin distribution more uniform. The medium- and high-dose groups significantly reduced neurological scores (P<0.01), while the low-, medium-, and high-dose groups significantly reduced the number of central crossings (P<0.01) and infarct volume (P<0.01), and decreased TNF-α, IL-1β, and IL-18 levels (P<0.05, P<0.01) compared with the model group. Furthermore, the medium- and high-dose groups significantly reduced TNF-α protein expression (P<0.05,P<0.01), and the high-dose group significantly reduced IL-1β and IL-18 protein expression (P<0.01). ConclusionThis study confirmed that CRPRR improves neurological function and alleviates brain tissue damage in MCAO/R rats. Its mechanism may be associated with the downregulation of inflammatory factors TNF-α, IL-1β, and IL-18, as well as the presence of nine active chemical constituents in cerebrospinal fluid, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide, which are closely related to their brain-protective effects.
6.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
7.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
8.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
9.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.

Result Analysis
Print
Save
E-mail