1.Partial knockout of NtPDK1a/1b/1c/1d enhances the disease resistance of Nicotiana tabacum.
Qianwei REN ; Hujiao LAN ; Tianyao LIU ; Huanting ZHAO ; Yating ZHAO ; Rui ZHANG ; Jianzhong LIU
Chinese Journal of Biotechnology 2025;41(2):670-679
The protein kinase A/protein kinase G/protein kinase C-family (AGC kinase family) of eukaryotes is involved in regulating numerous biological processes. The 3-phosphoinositide- dependent protein kinase 1 (PDK1), is a conserved serine/threonine kinase in eukaryotes. To understand the roles of PDK1 homologous genes in cell death and immunity in tetraploid Nicotiana tabacum, the previuosly generated transgenic CRISPR/Cas9 lines, in which 5-7 alleles of the 4 homologous PDK1 genes (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out, were used in this study. Our results showed that the hypersensitive response (HR) triggered by transient overexpression of active Pto (PtoY207D) or soybean GmMEKK1 was significantly delayed, whereas the resistance to Pseudomonas syrangae pv. tomato DC3000 (Pst DC3000) and tobacco mosaic virus (TMV) was significantly elevated in these partial knockout lines. The elevated resistance to Pst DC3000 and TMV was correlated with the elevated activation of NtMPK6, NtMPK3, and NtMPK4. Taken together, our results indicated that NtPDK1s play a positive role in cell death but a positive role in disease resistance, likely through negative regulation of the MAPK signaling cascade.
Nicotiana/virology*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plants, Genetically Modified/genetics*
;
Gene Knockout Techniques
;
Plant Proteins/genetics*
;
CRISPR-Cas Systems
;
Protein Serine-Threonine Kinases/genetics*
;
3-Phosphoinositide-Dependent Protein Kinases/genetics*
;
Pyruvate Dehydrogenase Acetyl-Transferring Kinase
;
Tobacco Mosaic Virus/pathogenicity*
2.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
3.Highly sensitive serological approaches for Pepino mosaic virus detection.
Wan-Qin HE ; Jia-Yu WU ; Yi-Yi REN ; Xue-Ping ZHOU ; Song-Bai ZHANG ; Ya-Juan QIAN ; Fang-Fang LI ; Jian-Xiang WU
Journal of Zhejiang University. Science. B 2020;21(10):811-822
Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.
Animals
;
Antibodies, Monoclonal/immunology*
;
China
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Female
;
Hybridomas
;
Solanum lycopersicum/virology*
;
Mice
;
Mice, Inbred BALB C
;
Plant Diseases/virology*
;
Potexvirus/metabolism*
;
Sensitivity and Specificity
;
Nicotiana

Result Analysis
Print
Save
E-mail