1.Bioequivalence study of tenofovir alafenamide fumarate tablets in Chinese healthy subjects
Xiao-Bin LI ; Nan WANG ; Ni-Na HU ; Ning WANG ; Chen-Dong DONG ; Xiao-Tong CUI ; He XIE ; Yan TIAN ; Wen-Ping WANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2113-2117
Objective To evaluate the pharmacokinetics(PK)of tenofovir alafenamide Fumarate tablets(25 mg)in healthy Chinese subjects after single oral administration to provide a basis for bioequivalence evaluation.Methods Using a single-dose,randomized,open-lable,two-period,two-way crossover design under fasting condition,while three-way crossover design under fed condition,42 healthy subjects respectively for fasting and fed study were enrolled,and randomized into two groups to receive a single dose of test product(T)or reference product(R)25 mg.Plasma concentration of tenofovir alafenamide and tenofovir were determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)method.The pharmacokinetic parameters were calculated by WinNonlin software(8.1 version)using non-compartmental model,and bioequivalence evaluation was performed for the two preparations.Relevant safety evaluations were performed during the trial.Results The test product and the reference product under fasting study,the main PK parameters of tenofovir alafenamide were as follows:Cmax were(215.17±94.24)and(199.30±71.11)ng·mL-1;AUC0-t were(135.44±71.60)and(123.91±53.82)h·ng·mL-1;the main PK parameters of tenofovir were as follows:Cmax were(7.30±2.27)and(7.12±1.74)ng·mL-1,AUC0-t of tenofovir were(237.16±47.09)and(230.06±43.41)h·ng·mL-1,respectively.The test product and the reference product under fed study,the main PK parameters of tenofovir were as follows:Cmax were(197.69±82.19)and(197.10±110.54)ng·mL-1;AUC0-t were(197.69±82.19)and(197.10±110.54)h·ng·mL-1;the main PK parameters of tenofovir were as follows:CMax were(2.57±1.37)and(2.58±1.31)ng·mL-1;AUC0-t were(227.08±74.33)and(238.51±128.30)h·ng·mL-1,respectively.The 90%confidence interval for geometric mean ratio of Cmax,AUC0-tof T and R under fed condition were between 80.00%-125.00%,respectively.The incidence of adverse events in fasting and fed tests was 21.43%and 30.95%,respectively,and no serious adverse event was reported.Conclusion The test formulation and reference formulation of tenofovir alafenamide fumarate tablets were equivalent and was safe.
2.Traditional Chinese medicine regulates the gut microbiota-bile acids-FXR axis to intervene in the development of colorectal cancer
Ya-ni WANG ; Xiao-yu ZHANG ; Yu-ping LIU ; Xiao-ying QIN ; Jie-ge HUO ; Yan CHEN ; Huang-qin ZHANG
Acta Pharmaceutica Sinica 2024;59(11):3027-3041
The gut microbiota plays a crucial role in the development of colorectal cancer (CRC). The imbalanced gut microbiota causes damage to the body and disrupts bile acids metabolism, increases susceptibility to CRC, and affects the signaling of farnesol X receptor (FXR), thereby promoting CRC progression. Traditional Chinese medicine has unique advantages in the treatment of CRC due to its synergistic regulatory effects of multiple components, targets, and pathways. It can regulate gut microbiota, intervene in bile acids metabolism, and activate its receptor FXR to inhibit the occurrence and development of CRC. Based on this, this article discusses the main role of the gut microbiota-bile acids-FXR axis in the development of CRC, and reviews the anti CRC effects and mechanisms of traditional Chinese medicine intervention on gut microbiota-bile acids-FXR axis, in order to provide new ideas and methods for the prevention and treatment of CRC.
3.Establishment of UPLC-DAD fingerprint of raw and vinegar Bupleurum bupleurum and study on spectral effect relationship of anti-hepatic fibrosis
Ni-Ping CHEN ; Yan WANG ; Yan DONG ; Yang-Xin XIAO ; Ji-Yuan TU ; Yan-Ju LIU ; Zhong-Shi ZHOU
Chinese Pharmacological Bulletin 2024;40(6):1145-1152
Aim To establish the fingerprint of raw bupleurum and vinegar bupleurum,investigate the difference in their anti-liver fibrosis effects,and ex-plore the relationship between the chemical composition of raw bupleurum and vinegar bupleurum and their an-ti-liver fibrosis efficacy.Methods The fingerprints of 10 batches of raw bupleuri and 10 batches of bupleuri were established by UPLC method.The liver fibrosis cell model in vitro was established by TGF-β induced LX-2 hepatic stellate cells.The liver fibrosis cell mod-el was analyzed with collagen type Ⅰ(col1a1)and α-smoothmuscleactin.The expression of α-SMA protein was used as the pharmacodynamic index.MetaboAna-lyst5.0 was used to screen the difference markers af-fecting the quality of raw bupledges and vinegar bu-pledges with VIP value>1 as the criterion.Orthogo-nal partial least squares discriminant analysis(OPLS-DA)was used to screen the main components of raw bupleurum and vinegar bupleurum against liver fibro-sis.Results There were 18 peaks in the UPLC fin-gerprints of raw bupleurum and vinegar bupleurum,and the analysis results showed that there were nine main differences between raw bupleurum and vinegar bupleurum,among which peaks 9,7 and 6 could be considered as bupleurin d,bupleurin a and bupleurin f.The results of spectral effect relationship showed that the main components of bupleurum anti-liver fibrosis were peaks 11,12,14,15 and 18.Conclusions The established fingerprint method of raw bupleurum and vinegar bupleurum is simple and feasible,and the important components of anti-liver fibrosis activity are screened through the spectrum effect relationship,which provides a basis for clarifying the material basis of anti-liver fibrosis effect of raw bupleurum and vine-gar bupleurum.
4.Potential of new self-crosslinked hyaluronic acid gel on the recovery of endometrium after artificial abortion: a multicenter, prospective randomized controlled trial
Chunying LI ; Lirong TENG ; Qing LIN ; Liping ZHAO ; Yunxia ZHU ; Xin MI ; Zhenna WANG ; Xiaoye WANG ; Lisong ZHANG ; Dan HAN ; Lili MA ; Wenpei BAI ; Jianmei WANG ; Jun NI ; Huiping SHEN ; Qinfang CHEN ; Hongmei XU ; Chenchen REN ; Jing JIANG ; Guanyuan LIU ; Ping PENG ; Xinyan LIU
Chinese Journal of Obstetrics and Gynecology 2024;59(11):864-870
Objective:To evaluate the impact of self-crosslinked hyaluronic acid (SCH) gel on endometrium recovery after artificial abortion.Methods:A multicenter, prospective randomized controlled trial was conducted across 18 hospitals from December 2021 to February 2023, involving 382 women who underwent artificial abortion. Participants were randomly allocated to receive either treatment with SCH gel (SCH group) or no treatment (control group) in a 1∶1 ratio. The primary outcome was endometrium thickness in 14 to 18 days after the first postoperative menstruation. Secondary outcomes included changes in menstrual volume during the first postoperative menstruation, menstruation resumption within 6 postoperative weeks, time to menstruation resumption, duration of the first postoperative menstruation, and incidence of dysmenorrhea.Results:Baseline characteristics of participants were comparable between the two groups (all P>0.05), with 95.3% (182/191) in SCH group and 92.7% (177/191) in the control group completed the study. The postoperative endometrial thickness in SCH group was significantly greater than that in the control group [(9.78±3.15) vs (8.95±2.32) mm; P=0.005]. SCH group also had significantly fewer participants with reduced menstrual volume [23 cases (12.6%, 23/182) vs 31 cases (17.5%, 31/177); P=0.038]. Although SCH group experienced less dysmenorrhea during the first postoperative menstrual period, this difference was not statistically significant [28.5% (51/179) vs 37.1% (65/175); P=0.083]. Outcomes were similar between SCH group and the control group regarding the proportion of participants who resumed menstruation within 6 weeks postoperatively, time to menstruation resumption, and duration of the first postoperative menstruation ( P=0.792, 0.485, and 0.254, respectively). No serious adverse events were observed during the study period, and no adverse events were attributed to SCH gel treatment. Conclusion:The application of SCH gel after artificial abortion is safe and might aid in the recovery of the endometrium.
5.Reasons and strategies of reoperation after oblique lateral interbody fusion
Zhong-You ZENG ; Deng-Wei HE ; Wen-Fei NI ; Ping-Quan CHEN ; Wei YU ; Yong-Xing SONG ; Hong-Fei WU ; Shi-Yang FAN ; Guo-Hao SONG ; Hai-Feng WANG ; Fei PEI
China Journal of Orthopaedics and Traumatology 2024;37(8):756-764
Objective To summarize the reasons and management strategies of reoperation after oblique lateral interbody fusion(OLIF),and put forward preventive measures.Methods From October 2015 to December 2019,23 patients who under-went reoperation after OLIF in four spine surgery centers were retrospectively analyzed.There were 9 males and 14 females with an average age of(61.89±8.80)years old ranging from 44 to 81 years old.The index diagnosis was degenerative lumbar intervertebral dics diseases in 3 cases,discogenie low back pain in 1 case,degenerative lumbar spondylolisthesis in 6 cases,lumbar spinal stenosis in 9 cases and degenerative lumbar spinal kyphoscoliosis in 4 cases.Sixteen patients were primarily treated with Stand-alone OLIF procedures and 7 cases were primarily treated with OLIF combined with posterior pedicle screw fixation.There were 17 cases of single fusion segment,2 of 2 fusion segments,4 of 3 fusion segments.All the cases underwent reoperation within 3 months after the initial surgery.The strategies of reoperation included supplementary posterior pedicle screw instrumentation in 16 cases;posterior laminectomy,cage adjustment and neurolysis in 2 cases,arthroplasty and neuroly-sis under endoscope in 1 case,posterior laminectomy and neurolysis in 1 case,pedicle screw adjustment in 1 case,exploration and decompression under percutaneous endoscopic in 1 case,interbody fusion cage and pedicle screw revision in 1 case.Visu-al analogue scale(VAS)and Oswestry disability index(ODI)index were used to evaluate and compare the recovery of low back pain and lumbar function before reoperation and at the last follow-up.During the follow-up process,the phenomenon of fusion cage settlement or re-displacement,as well as the condition of intervertebral fusion,were observed.The changes in in-tervertebral space height before the first operation,after the first operation,before the second operation,3 to 5 days after the second operation,6 months after the second operation,and at the latest follow-up were measured and compared.Results There was no skin necrosis and infection.All patients were followed up from 12 to 48 months with an average of(28.1±7.3)months.Nerve root injury symptoms were relieved within 3 to 6 months.No cage transverse shifting and no dislodgement,loosening or breakage of the instrumentation was observed in any patient during the follow-up period.Though the intervertebral disc height was obviously increased at the first postoperative,there was a rapid loss in the early stage,and still partially lost after reopera-tion.The VAS for back pain recovered from(6.20±1.69)points preoperatively to(1.60±0.71)points postoperatively(P<0.05).The ODI recovered from(40.60±7.01)%preoperatively to(9.14±2.66)%postoperatively(P<0.05).Conclusion There is a risk of reoperation due to failure after OLIF surgery.The reasons for reoperation include preoperative bone loss or osteoporosis the initial surgery was performed by Stand-alone,intraoperative endplate injury,significant subsidence of the fusion cage after surgery,postoperative fusion cage displacement,nerve damage,etc.As long as it is discovered in a timely manner and handled properly,further surgery after OLIF surgery can achieve better clinical results,but prevention still needs to be strengthened.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail