1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Risk factors, diagnosis and treatment of perforation after endoscopic retrograde cholangiopancreatography
Wenyu ZHAO ; Yan FU ; Yajiao DUAN ; Juan TANG ; Jing NI
Journal of Clinical Hepatology 2025;41(3):580-587
After 50 years of clinical development, endoscopic retrograde cholangiopancreatography (ERCP) has become the preferred method for the clinical diagnosis and treatment of cholangio-pancreatic duct diseases; however, the major postoperative complications of ERCP, such as pancreatitis, hemorrhage, and perforation, are still a difficult issue faced by clinicians, and postoperative perforation is associated with an extremely high risk of death. Therefore, it is very important to explore the risk factors for perforation after ERCP, make a definite diagnosis of perforation in a timely manner, and formulate precise prevention and treatment measures. By reviewing a large number of articles, this article summarizes the influencing factors for perforation after ERCP and related diagnosis and treatment measures.
3.Causal relationship between mental disorders and hypercholesterolemia: a Mendelian randomization analysis
Qian ZOU ; Ni TANG ; Huanhui LIU ; Hanjing ZHANG ; Xiaojie MA
Sichuan Mental Health 2025;38(2):123-130
BackgroundMetabolic syndrome (MetS) is highly prevalent in patients with mental disorders, including elevated diastolic or systolic blood pressure, elevated fasting glucose, hypercholesterolemia, abdominal obesity and so on. As an important component of MetS, the relationship between hypercholesterolemia and mental disorder has been extensively reported, whereas few genome-wide association studies (GWAS) have been conducted to identify the causal role of mental disorders in hypercholesterolemia. ObjectiveTo explore the potential causal relationship between mental disorders and hypercholesterolemia by two-sample Mendelian randomization (MR) method. MethodsSummary data from GWAS were analyzed. Single nucleotide polymorphisms (SNPs) strongly associated with mental disorders were chosen as instrumental variables, and hypercholesterolemia was used as outcome variable. MR analysis utilized inverse-variance weighted (IVW), MR-Egger regression and weighted median estimation (WME) as the primary analytical tool, and supplemented by simple mode (SM) and weighted mode (WM). The causal relationship between mental disorders and the risk of hypercholesterolemia was illustrated in terms of odds ratio (OR). ResultsA total of 36 SNPs associated with mental disorders were identified as instrumental variables. The primary findings from IVW revealed existence of a causal relationship between mental disorders and hypercholesterolemia (IVW: OR=1.067, 95% CI: 1.026~1.109, P=0.001). Findings from the additional methods (MR-Egger regression, WME, SM, WM) were basically consistent with those reported in IVW method. Further verification indicated that the causal relationship between mental disorders and the risk of hypercholesterolemia was not affected by genetic polymorphism (P>0.05). The absence of heterogeneity was confirmed through Cochran's Q test and MR-Egger regression (P>0.05). Furthermore, no causal association in the reverse direction was found (P>0.05). ConclusionThere is a causal relationship between mental disorders and hypercholesterolemia, and patients with mental disorders may have an increased probability of suffering from hypercholesterolemia.
4.Preparation and evaluation of quality,targeting and cytotoxicity of triptolide-loaded targeting nanoparticles
Moli YIN ; Wenbin LUO ; Jingzhe XU ; Zebo TANG ; Ni GUO ; Youxing LAO ; Huiyan WANG
China Pharmacy 2025;36(12):1457-1462
OBJECTIVE To prepare nanoparticle-based targeting preparation loaded with triptolide (TP), and evaluate its quality, targeting ability and cytotoxic effects. METHODS Polymer nanoparticles carrying TP-targeted folic acid (FA) receptor (TP@PLGA-PEG-FA) were fabricated using poly (lactic-co-glycolic acid)/polyethylene glycol/FA (PLGA-PEG-FA) as the carrier by emulsion and volatilization technique. The morphology and distribution were observed, and their particle size, Zeta potential, polydispersity index (PDI), drug loading capacity and encapsulation efficiency were measured. Their stability, blood compatibility, in vitro drug release, uptake by RAW264.7 cells (localization with fluorescent dye Cy3.5), and in vitro cytotoxicity were evaluated. RESULTS TP@PLGA-PEG-FA exhibited spherical shape and uniform distribution, with particle size of (122.60±0.02) nm, Zeta potential of (-17.6±0.6)mV, and PDI of 0.26±0.02; drug loading capacity and encapsulation efficiency of TP were measured to be (7.78±0.05)% and (68.62±0.03)%, respectively. The hemolysis rates of 100, 200, 300, 400 µg/mL TP@PLGA- PEG-FA were 0.77%, 0.92%, 1.34% and 1.63%, respectively. There were no significant changes in particle size, PDI and Zeta potential when TP@PLGA-PEG-FA were placed in 4 ℃ water for 14 days and in DMEM culture medium containing 10% fetal bovine serum at 37 ℃ for 12 h. The cumulative release rate of TP@PLGA-PEG-FA was (84.83±0.29)% in phosphate buffer at pH5.5 for 72 h, which was significantly higher than the cumulative release rates in phosphate buffer solutions at pH7.4 and 6.5 for 72 h ([ 42.37±0.35)% and (63.83±0.29)% , respectively] (P<0.05). Activated RAW264.7 cells took up significantly more Cy3.5@PLGA-PEG-FA than they took up Cy3.5@PLGA-PEG-FA+free FA and Cy3.5@PLGA-PEG. When the mass concentration of TP was≥15.63 ng/mL, the survival rates of activated cells in the TP@PLGA-PEG-FA groups were significantly lower than those of the same mass concentration of free TP groups (P<0.05). CONCLUSIONS The prepared TP@PLGA-PEG-FA has high stability, good blood compatibility, active targeting and cytotoxicity to inflammatory cells.
5.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
6.Granuloma faciale and Takayasu arteritis in a child: a case report.
Wei LIAO ; Juan LONG ; Jian-Ping TANG ; Dan-Ni WO ; Ye SHU ; Zhu WEI
Chinese Journal of Contemporary Pediatrics 2025;27(10):1266-1270
An 11-year-old boy presented with erythematous plaques over the bilateral mandibular and mental regions for 2 years, accompanied by cough and dyspnea for more than 2 months. Chest computed tomography angiography revealed marked stenosis of the right pulmonary artery, irregular aortic caliber, and aortic wall thickening. Histopathological examination of the skin lesion, including immunohistochemistry and special stains, confirmed a chronic suppurative inflammation. Whole-exome sequencing was negative. A final diagnosis of granuloma faciale and Takayasu arteritis was established. Combination therapy with systemic tocilizumab, prednisone, and methotrexate, along with topical 0.1% tacrolimus ointment, resulted in a favorable clinical response. This report summarizes the clinical features of a pediatric case of granuloma faciale and Takayasu arteritis and reviews the etiology, diagnostic approach, and current treatment strategies for the disorders, aiming to enhance clinicians' understanding of these conditions.
Humans
;
Male
;
Child
;
Takayasu Arteritis/diagnosis*
;
Facial Dermatoses/diagnosis*
7.Potential role of FNDC5 in exercise-induced improvement of cognitive function.
Ruobing ZHAO ; Xuchang ZHOU ; Dongxue WANG ; Haifeng TANG ; Guoxin NI
Journal of Zhejiang University. Science. B 2025;26(6):557-572
Cognitive dysfunction often occurs in Alzheimer's disease, Parkinson's disease, cerebrovascular disease, or other neurodegenerative diseases, and can significantly impact the life quality of patients and create serious social, psychological, and economic burdens for individuals and their families. Numerous studies have confirmed that exercise can slow the decline in cognitive function through multiple pathways, in which fibronectin type III domain-containing protein 5 (FNDC5) plays an important role. However, the current research on the modulation of FNDC5 by exercise and its ability to improve hippocampal cognitive function lacks a systematic and comprehensive understanding. Therefore, this review focuses on the latest research progress regarding the role of exercise-induced FNDC5 in cognitive function, systematically reviews the positive effects of FNDC5 on cognitive function impairment caused by various factors, and clarifies the specific mechanisms by which exercise-induced FNDC5 improves cognitive function by inhibiting neuroinflammation and improving hippocampal neurogenesis and hippocampal synaptic plasticity. Based on the existing literature, we also identify the areas that require further research in this field. Overall, this review provides a theoretical basis for exercise-based prevention and improvement of cognitive function impairment.
Humans
;
Cognition/physiology*
;
Fibronectins/physiology*
;
Exercise/physiology*
;
Hippocampus/physiology*
;
Cognitive Dysfunction/prevention & control*
;
Neuronal Plasticity
;
Animals
;
Neurogenesis
8.Asiaticoside alleviates myocardial ischemia-reperfusion injury in rats by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Fenlan BIAN ; Shiyao NI ; Peng ZHAO ; Maonanxing QI ; Bi TANG ; Hongju WANG ; Pinfang KANG ; Jinjun LIU
Journal of Southern Medical University 2025;45(5):977-985
OBJECTIVES:
To study the mechanism mediating the protective effect of asiaticoside (AS) against myocardial ischemia-reperfusion injury (MIRI) in rats.
METHODS:
Fifty SD rats were randomized into sham-operated group, MIRI model group and AS treatment group. AS treatment was administered at low, moderate and high doses by daily gavage for 2 weeks before MIRI modeling (n=10). Serum levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), interleukin-18 (IL-18) and IL-1β, the volume of myocardial infarction and ischemia, and myocardial pathologies of the rats were determined or observed. The protein expression levels of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18 in the myocardial tissues were detected using Western blotting. The changes in the expression levels of these proteins were also detected in H9C2 cells with AS pretreatment prior to hypoxia-reoxygenation (H/R) injury.
RESULTS:
The rats models of MIRI exhibited significant myocardial infarction and ischemia with increased serum levels of LDH and CK-MB and myocardial expressions of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18. AS pretreatment effectively reduced myocardial infarction volume in the rat models and significantly reduced serum LDH and CK-MB levels and the protein levels in the myocardial tissue in a dose-dependent manner. In the H9C2 cell model of H/R injury, AS pretreatment significantly suppressed the elevation of the protein expressions of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18. Molecular docking studies showed that AS had a strong binding affinity with NLRP3.
CONCLUSIONS
Asiaticoside can alleviate MIRI in rats possibly by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Inflammasomes/metabolism*
;
Triterpenes/pharmacology*
;
Interleukin-18/metabolism*
;
Male
;
Interleukin-1beta/metabolism*
;
Caspase 1/metabolism*
9.Oxymatrine, a novel TLR2 agonist, promotes megakaryopoiesis and thrombopoiesis through the STING/NF-κB pathway.
Chengyang NI ; Ling ZHOU ; Shuo YANG ; Mei RAN ; Jiesi LUO ; Kui CHENG ; Feihong HUANG ; Xiaoqin TANG ; Xiang XIE ; Dalian QIN ; Qibing MEI ; Long WANG ; Juan XIAO ; Jianming WU
Journal of Pharmaceutical Analysis 2025;15(1):101054-101054
Radiation-induced thrombocytopenia (RIT) faces a perplexing challenge in the clinical treatment of cancer patients, and current therapeutic approaches are inadequate in the clinical settings. In this research, oxymatrine, a new molecule capable of healing RIT was screened out, and the underlying regulatory mechanism associated with magakaryocyte (MK) differentiation and thrombopoiesis was demonstrated. The capacity of oxymatrine to induce MK differentiation was verified in K-562 and Meg-01 cells in vitro. The ability to induce thrombopoiesis was subsequently demonstrated in Tg (cd41:enhanced green fluorescent protein (eGFP)) zebrafish and RIT model mice. In addition, we carried out network pharmacological prediction, drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) analyses to explore the potential targets of oxymatrine. Moreover, the pathway underlying the effects of oxymatrine was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Western blot (WB), and immunofluorescence. Oxymatrine markedly promoted MK differentiation and maturation in vitro. Moreover, oxymatrine induced thrombopoiesis in Tg (cd41:eGFP) zebrafish and accelerated thrombopoiesis and platelet function recovery in RIT model mice. Mechanistically, oxymatrine directly binds to toll-like receptor 2 (TLR2) and further regulates the downstream pathway stimulator of interferon genes (STING)/nuclear factor-kappaB (NF-κB), which can be blocked by C29 and C-176, which are specific inhibitors of TLR2 and STING, respectively. Taken together, we demonstrated that oxymatrine, a novel TLR2 agonist, plays a critical role in accelerating MK differentiation and thrombopoiesis via the STING/NF-κB axis, suggesting that oxymatrine is a promising candidate for RIT therapy.
10.Research Progress in Pyroptosis, Drug Therapy and Immunotherapy in Glioblastoma
Ke TANG ; Ni HUANG ; Qinyou TAN
Chinese Journal of Modern Applied Pharmacy 2024;41(2):287-294
Pyroptosis, a form of inflammatory cell death mediated by the Gasdermins family, promotes the release of inflammatory mediators and activates immune cell populations such as NK cells, T cells and macrophages in the tumor microenvironment(TME) to exert immune-regulating and anti-tumor effects. Glioblastoma(GBM) is the most serious and malignant glioma, and the median survival of patients diagnosed with GBM is less than 2 years, and the presence of the blood-brain barrier makes it difficult to deliver drugs to the brain, thus affecting the effect of drugs against GBM. Therefore, it is important to explore new measures and mechanisms to treat GBM, which has a complex TME with a large number of immune cell populations that are often immunosuppressed by GBM. Cellular pyroptosis as a mode of cell death capable of activating immunity, has the effect of activating the body’s immunity to help reverse TME immunosuppression. This review will focus on the relationship between cell pyroptosis and the immune system, how cell pyroptosis affects the immune cell population of TME in GBM, and the new progress in drug research on cell pyroptosis pathways in GBM treatment, providing new directions and strategies for future clinical treatment of GBM.


Result Analysis
Print
Save
E-mail