1.A Cross-sectional Study of Blood Glucose and Biochemical Indicators in Pediatric Patients with Hepatic Glycogen Storage Disease
Ni MA ; Haotian WU ; Ying WANG ; Jing YANG ; Danxia LIANG ; Min YANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):132-137
ObjectivePatients with hepatic glycogen storage disease(GSD)have recurrent episodes of hypoglycemia. This study aimed to investigate and analyze blood glucose and biochemical indicators in pediatric patients with hepatic GSD, thus provide data support for hypoglycemia prevention and its clinical management. MethodsA cross-sectional field study was conducted among patients with hepatic GSD treated in the Department of Pediatrics of Guangdong Provincial People's Hospital on July 14, 2024. We collected the peripheral blood samples of the patients and their healthy family controls on site, then analyzed and compared their blood glucose and biochemical indicators. ResultsOf the 44 patients with hepatic GSD, there were 34 males and 10 females, including GSD Ib(n =14), GSD Ia(n=15), GSD Ⅲ(n=2), GSD Ⅵ(n=7)and GSD Ⅸ(n=6). The average age was 7.60(5.08-11.98)years. All patients were on uncooked cornstarch(UCCS)therapy. Of the patients, 77.3%(34/44)had hepatomegaly, 61.4%(27/44)had recurrent hypoglycemia, 61.4%(27/44)had blood glucose ≤ 3.9 mmol/L, 18.2%(8/44)had blood glucose ≤ 2.8 mmol/L, and none of the 8 cases was GSD Ib. The lowest blood glucose level was 1.19 mmol/L and no episodes of hypoglycemia occurred. Of the family control subjects, 65.9%(29/44)had blood glucose ≤ 3.9 mmol/L. There was no significant difference in hypoglycemia prevalence between hepatic GSD group and control group(P=0.658). The hepatic GSD patients had hyperlactacemia, hyperuricemia and hypercholesterolemia prevalence rates of 65.9%, 45.5% and 9.1%, respectively, as compared with 18.2%, 43.2% and 15.9%, respectively, for the family control subjects. No significant difference was found in the prevalence rates of hyperuricemia and hypercholesterolemia between the two groups(P=0.830 and P=0.334, respectively). ConclusionsAsymptomatic hypoglycemia is common in patients with hepatic GSD, especially in non-GSD-Ib patients. It is necessary to optimize the diet management of UCCS, conduct dynamic blood glucose monitoring and follow a light diet, so as to decrease hyperuricemia and hypercholesterolemia, avoid and reduce the serious adverse reactions and complications caused by severe hypoglycemia.
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
5.Association between the Non-Fasting Triglyceride-Glucose Index and Hyperglycemia in pregnancy during the Third Trimester in High Altitudes
Qingqing WANG ; Hongying HOU ; Ma NI ; Yating LIANG ; Xiaoyu CHEN ; WA Zhuoga DA ; Qiang LIU ; Zhenyan HAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(5):861-871
ObjectiveTo investigate the relationship between the non-fasting triglyceride and glucose (TyG) index and hyperglycemia in pregnancy during the third trimester in high altitudes. MethodsThis study selected clinical and laboratory data of 774 Tibetan singleton pregnant women who delivered at Chaya People's Hospital of Qamdo city in Xizang autonomous region, from January 2023 to April 2025. The non-fasting TyG index was calculated from non-fasting triglyceride (TG) and random plasma glucose (PG). Based on the tertiles of the non-fasting TyG index values, the individuals were split into three groups (corresponding to non-fasting TyG index of 8.89 and 9.21, respectively). The baseline clinical characteristics, lipid levels and the occurrence of developing hyperglycemia in pregnancy were compared among the three groups. Statistical analyses were performed using ANOVA, Kruskal-Wallis H test, Chi-square test, or Fisher exact test and the relationship between the non-fasting TyG index and hyperglycemia in pregnancy were examined using multivariate logistic regression models and curve fitting. ResultsA total of 774 Tibetan singleton pregnant women were included, with a average age of 27.3 ± 6.1 years, a pre-delivery body mass index (Pre-BMI) of (25.2±2.3)kg/m2 , a proportion of 26.7% (207/774) primigravid women, the mean non-fasting TyG index was 9.1 ± 0.4。Thirty pregnant women were diagnosed with hyperglycemia in pregnancy, with a detection rate of 3.9% (30/774). Statistically significant differences in serum total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were identified when comparing different non-fasting TyG groups (all P values <0.05). Subsequent trend test analysis indicated that the levels of TC, TG, LDL-C, and PG gradually increased with elevated the non-fasting TyG index ( Ftrend TC=95.61, P<0.001; Ftrend TG=1 051.91, P<0.001; Ftrend LDL-C = 97.20, P < 0.001; Ftrend TG=195.20; P<0.001). After adjustment for maternal age, pre-delivery BMI, altitude, TC, LDL-C, and HDL-C, multivariate Logistic regression models revealed independent positive associations between non-fasting TyG index and hyperglycemia in pregnancy (Model 1: OR=2.72, 95% CI: 1.13-6.53, P=0.026; Model 2: OR=2.56, 95% CI: 1.01-6.50, P=0.048; Model 3: OR=2.72, 95% CI: 1.06-6.97, P=0.037; Model 4: OR=4.02, 95% CI: 1.42-11.40, P=0.009) and the incident of hyperglycemia in pregnancy showed an increasing tendency as increasing with the non-fasting TyG index, however, this association did not statistical significance (P trend >0.05). Curve fitting by restricted cubic splines (RCS) were used to assess linearity between non-fasting TyG and hyperglycemia in pregnancy, and there was a linear dose-response relationship between non-fasting TyG and hyperglycemia in pregnancy (P for non-linear = 0.515). ConclusionNon-fasting TyG index in the third trimester is a risk factor for hyperglycemia in pregnancy among the Tibetan singleton pregnant women at high altitudes and there was a possible linear dose-response relationship between the non-fasting TyG index and hyperglycemia in pregnancy.
6.Drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma and dynamics of active components in drying process.
Yu-Qin LI ; Xiu-Xiu SHA ; Zhe ZHANG ; Shu-Lan SU ; Liang NI ; Sheng GUO ; Hui YAN ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(1):128-139
This study explored the drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma(SM), established the suitable models simulating the drying kinetics, and then analyzed the dynamic changes of active components during the drying processes with different methods, aiming to provide a basis for the establishment of suitable drying methods and the quality control of SM. The drying kinetics were studied based on the drying curve, drying rate, moisture effective diffusion coefficient, and drying activation energy, and the appropriate drying kinetics model of SM was established. The drying performance of different methods, such as hot air drying, infrared drying, and microwave drying of SM was evaluated, and the changes in the content of 10 salvianolic acids and 6 tanshinones during drying were analyzed by UPLC-TQ-MS. The Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) was employed to evaluate the quality of SM dried with different methods. The results showed that the drying rate and moisture effective diffusion coefficient of SM increased with the rise in drying temperature, and the maximum drying rates of different methods were in the order of microwave drying > infrared drying > hot air drying, slice > whole root. The drying rate decreased with the rise in temperature and the extension of drying time. The activation energy of hot air drying was higher than that of infrared drying in SM. The most suitable model for simulating the drying process of SM was the Page model. The TOPSIS results suggested infrared drying at 50 ℃ was the optimal drying method for SM. During the drying process, the content of salvianolic acids increased in different degrees with the loss of moisture, among which salvianolic acid B showed the largest increase of 44 times compared with that in the fresh medicinal material. Tanshinones also existed in the fresh herb of SM, and the content of tanshinone Ⅱ_A increased by 3 times after drying. The results provided a basis for the establishment of suitable drying methods and the quality control of SM.
Salvia miltiorrhiza/chemistry*
;
Desiccation/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Kinetics
;
Quality Control
;
Abietanes
7.Potential mechanism of Yueju Pills in improving depressive symptoms of psychocardiac diseases based on metabolomics and network pharmacology.
Cheng-Yu DU ; Xue-Feng GUO ; Han-Wen ZHANG ; Jian LIANG ; Huan ZHANG ; Guo-Wei HUANG ; Ping NI ; Hai-Jun MA ; You YU ; Rui YU
China Journal of Chinese Materia Medica 2025;50(16):4564-4573
The therapeutic effects of Yueju Pills on depression and cardiovascular diseases have been widely recognized. Previous studies have shown that the drug can significantly improve depressive-like behaviors induced by chronic unpredictable mild stress(CUMS) combined with atherosclerosis(AS). Given the complex pathogenesis of psychocardiac diseases, this study integrated metabolomics and network pharmacology to systematically elucidate the mechanism of Yueju Pills in alleviating depressive symptoms in psychocardiac diseases. The results demonstrate that, after Yueju Pill intervention, the levels of 9 abnormal metabolites in the hippocampus restore to normal ranges, primarily involving key pathways or signaling pathways, including the cyclic adenosine monophosphate(cAMP), mammalian target of rapamycin(mTOR), glycine/serine/threonine metabolism, and aminoacyl-tRNA biosynthesis. In a high-fat diet-induced CUMS ApoE~(-/-) mouse model, Yueju Pills significantly increases adenosine monophosphate(AMP) levels and decreases L-alanine and D-glyceric acid levels in the hippocampus. In conclusion, Yueju Pills exert antidepressant effects by regulating multiple metabolic axes, including glycine/serine/threonine metabolism and the cAMP, mTOR signaling pathways. Network pharmacology predictions reveal that the treatment of CUMS combined with AS by its core active components may be realized through modulating pathways concerning neuroinflammation and synaptic plasticity, including serine/threonine-protein kinase 1(AKT1), mitogen-activated protein kinase 1(MAPK1), and prostaglandin-endoperoxide synthase 2(PTGS2). This study provides a theoretical reference for the clinical application of Yueju Pills in alleviating the depressive symptoms of psychocardiac diseases.
Animals
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Male
;
Depression/genetics*
;
Humans
;
Hippocampus/drug effects*
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
8.Cancer-Associated Fibroblasts Interact with Schwann Cells for Tumor Perineural Invasion by Oral Squamous Cell Carcinoma.
Xinwen ZHANG ; Yijia HE ; Shixin XIE ; Yuxian SONG ; Xiaofeng HUANG ; Qingang HU ; Yanhong NI ; Yi WANG ; Yong FU ; Liang DING
Neuroscience Bulletin 2025;41(6):1003-1020
Perineural invasion (PNI) by tumor cells is a key phenotype of highly-invasive oral squamous cell carcinoma (OSCC). Since Schwann cells (SCs) and fibroblasts maintain the physiological homeostasis of the peripheral nervous system, and we have focused on cancer-associated fibroblasts (CAFs) for decades, it's imperative to elucidate the impact of CAFs on SCs in PNI+ OSCCs. We describe a disease progression-driven shift of PNI- towards PNI+ during the progression of early-stage OSCC (31%, n = 125) to late-stage OSCC (53%, n = 97), characterized by abundant CAFs and nerve demyelination. CAFs inhibited SC proliferation/migration and reduced neurotrophic factors and myelin in vitro, and this involved up-regulated ER stress and decreased MAPK signals. Moreover, CAFs also aggravated the paralysis of the hind limb and PNI in vivo. Unexpectedly, leukemia inhibitory factor (LIF) was exclusively expressed on CAFs and up-regulated in metastatic OSCC. The LIF inhibitor EC330 restored CAF-induced SC inactivation. Thus, OSCC-derived CAFs inactivate SCs to aggravate nerve injury and PNI development.
Schwann Cells/metabolism*
;
Mouth Neoplasms/metabolism*
;
Humans
;
Cancer-Associated Fibroblasts/metabolism*
;
Animals
;
Carcinoma, Squamous Cell/metabolism*
;
Neoplasm Invasiveness/pathology*
;
Male
;
Female
;
Mice
;
Cell Movement/physiology*
;
Cell Proliferation/physiology*
;
Cell Line, Tumor
;
Leukemia Inhibitory Factor/metabolism*
;
Middle Aged
9.Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference.
Junyu ZHANG ; Jie PENG ; Chaolun YU ; Yu NING ; Wenhui LIN ; Mingxing NI ; Qiang XIE ; Chuan YANG ; Huiying LIANG ; Miao LIN
Journal of Pharmaceutical Analysis 2025;15(8):101265-101265
Diabetic kidney disease (DKD) with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression. Therapeutic targets supported by causal genetic evidence are more likely to succeed in randomized clinical trials. In this study, we integrated large-scale plasma proteomics, genetic-driven causal inference, and experimental validation to identify prioritized targets for DKD using the UK Biobank (UKB) and FinnGen cohorts. Among 2844 diabetic patients (528 with DKD), we identified 37 targets significantly associated with incident DKD, supported by both observational and causal evidence. Of these, 22% (8/37) of the potential targets are currently under investigation for DKD or other diseases. Our prospective study confirmed that higher levels of three prioritized targets-insulin-like growth factor binding protein 4 (IGFBP4), family with sequence similarity 3 member C (FAM3C), and prostaglandin D2 synthase (PTGDS)-were associated with a 4.35, 3.51, and 3.57-fold increased likelihood of developing DKD, respectively. In addition, population-level protein-altering variants (PAVs) analysis and in vitro experiments cross-validated FAM3C and IGFBP4 as potential new target candidates for DKD, through the classic NLR family pyrin domain containing 3 (NLRP3)-caspase-1-gasdermin D (GSDMD) apoptotic axis. Our results demonstrate that integrating omics data mining with causal inference may be a promising strategy for prioritizing therapeutic targets.
10.Construction of a Prognostic Model for Lysosome-dependent Cell Death in Gastric Cancer Based on Single-cell RNA-seq and Bulk RNA-seq Data.
Peng NI ; Kai Xin GUO ; Tian Yi LIANG ; Xin Shuang FAN ; Yan Qiao HUA ; Yang Ye GAO ; Shuai Yin CHEN ; Guang Cai DUAN ; Rong Guang ZHANG
Biomedical and Environmental Sciences 2025;38(4):416-432
OBJECTIVE:
To identify prognostic genes associated with lysosome-dependent cell death (LDCD) in patients with gastric cancer (GC).
METHODS:
Differentially expressed genes (DEGs) were identified using The Cancer Genome Atlas - Stomach Adenocarcinoma. Weighted gene co-expression network analysis was performed to identify the key module genes associated with LDCD score. Candidate genes were identified by DEGs and key module genes. Univariate Cox regression analysis, and least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were performed for the selection of prognostic genes, and risk module was established. Subsequently, key cells were identified in the single-cell dataset (GSE183904), and prognostic gene expression was analyzed. Cell proliferation and migration were assessed using the Cell Counting Kit-8 assay and the wound healing assay.
RESULTS:
A total of 4,465 DEGs, 95 candidate genes, and 4 prognostic genes, including C19orf59, BATF2, TNFAIP2, and TNFSF18, were identified in the analysis. Receiver operating characteristic curves indicated the excellent predictive power of the risk model. Three key cell types (B cells, chief cells, and endothelial/pericyte cells) were identified in the GSE183904 dataset. C19orf59 and TNFAIP2 exhibited predominant expression in macrophage species, whereas TNFAIP2 evolved over time in endothelial/pericyte cells and chief cells. Functional experiments confirmed that interfering with C19orf59 inhibited proliferation and migration in GC cells.
CONCLUSION
C19orf59, BATF2, TNFAIP2, and TNFSF18 are prognostic genes associated with LDCD in GC. Furthermore, the risk model established in this study showed robust predictive power.
Stomach Neoplasms/pathology*
;
Humans
;
Prognosis
;
Lysosomes/physiology*
;
RNA-Seq
;
Cell Death
;
Single-Cell Analysis
;
Gene Expression Regulation, Neoplastic
;
Cell Proliferation
;
Single-Cell Gene Expression Analysis

Result Analysis
Print
Save
E-mail