1.Effects of Ligustrazine on Airway Inflammation in A Mouse Model of Neutrophilic Asthma.
Xiao-Ming LIU ; Yong-Bin WANG ; Qian WU ; Zhong-Rui BIAN ; Xiao-Wen CHE
Chinese journal of integrative medicine 2018;24(5):353-358
OBJECTIVETo investigate the effects of ligustrazine (LTZ) on airway inflammation in a mouse model of neutrophilic asthma (NA).
METHODSForty healthy C57BL/6 female mice were randomly divided into 4 groups using a random number table, including the normal control, NA, LTZ and dexamethasone (DXM) groups, with 10 rats in each group. The NA mice model was established by the method of ovalbumin combined with lipopolysaccharide sensitization. At 0.5 h before each challenge, LTZ and DXM groups were intraperitoneally injected with LTZ (80 mg/kg) or DXM (0.5 mg/kg) for 14 d, respectively, while the other two groups were given the equal volume of normal saline. After last challenge for 24 h, the aerosol inhalation of methacholine was performed and the airway reactivity was measured. The bronchoalveolar lavage fluid (BALF) was collected. The Wright-Giemsa staining was used for total white blood cells and differential counts. The levels of cytokines interleukin (IL)-17 and IL-10 were detected by enzyme-linked immunosorbent assay. The pathological change of lung tissue was observed by hematoxylin eosin staining.
RESULTSThe airway responsiveness of the NA group was signifificantly higher than the normal control group (P<0.05), while those in the LTZ and DXM groups were signifificantly lower than the NA group (P<0.05). The neutrophil and eosinophil counts in the LTZ and DXM groups were signifificantly lower than the NA group (P<0.05), and those in the LTZ group were signifificantly lower than the DXM group (P<0.05). There were a large number of peribronchiolar and perivascular inflammatory cells in fifiltration in the NA group. The airway inflflammation in the LTZ and DXM groups were signifificantly alleviated than the NA group. The infifiltration in the LTZ group was signifificantly reduced than the DXM group. Compared with the normal control group, the IL-17 level in BALF was signifificantly increased and the IL-10 level in BALF was signifificantly decreased in the NA group (P<0.05). LTZ and DXM treatment signifificantly decreased IL-17 levels and increased IL-10 levels compared with the NA group (P<0.05), and the changes in the above indices were more signifificant in the LTZ group (P<0.05).
CONCLUSIONLTZ could alleviate the airway inflflammation in the NA mice model through increasing the IL-10 level and decreasing the IL-17 level.
Animals ; Asthma ; blood ; complications ; drug therapy ; pathology ; Bronchoalveolar Lavage Fluid ; cytology ; Disease Models, Animal ; Female ; Interleukin-10 ; metabolism ; Interleukin-17 ; metabolism ; Leukocyte Count ; Lung ; drug effects ; pathology ; Mice, Inbred C57BL ; Neutrophils ; drug effects ; pathology ; Pneumonia ; blood ; complications ; drug therapy ; pathology ; Pyrazines ; pharmacology ; therapeutic use ; Respiratory Hypersensitivity ; blood ; complications ; drug therapy ; pathology
2.Protective effect of synthetic salidroside on acute lung injury in rats.
Qian HUANG ; Yan-Chun CAI ; Xiao-Li WEI ; Jin-Long WU ; Ru-Huan MEI ; Xiao-Lan HU
Acta Physiologica Sinica 2017;69(3):291-297
To study the protective effect and mechanism of synthetic salidroside on acute lung injury (ALI) induced by lipopolysaccharide (LPS), male Sprague-Dawley (SD) rats were randomly divided into saline control group, 3 mg/kg LPS model group, different doses of salidroside groups (5, 20 and 80 mg/kg), and 5 mg/kg dexamethasone group. Intratracheal LPS instillation was used to establish the ALI model 0.5 h after intraperitoneal injection of salidroside or dexamethasone, and the rats were sacrificed 6 h later. Lung wet/dry weight ratio (W/D) was calculated. Lung tissue pathology and lung injury score (LIS) were observed and evaluated through hematoxylin and eosin (HE) staining. The centrifugal sediment of bronchoalveolar lavage fluid (BALF) was used to count the polymorphonuclear leukocyte (PMN) number by Wright's staining, and the centrifugal supernatant of BALF was used to determine the contents of protein and inflammatory factors (TNF-α, IL-1β and IL-6). The contents of myeloperoxidase (MPO) and malondialdehyde (MDA) in lung tissue were determined. Western blot was used to detect the expression levels of phosphorylated and total nuclear factor kappa B (NF-κB)/p65 protein in lung tissue. The results showed that, compared with LPS group, the intervention of synthetic salidroside alleviated the pathological damage in lung tissue, decreased the LIS and lung W/D ratio (P < 0.05), reduced the PMN number, the contents of protein and inflammatory factors in BALF (P < 0.05), reduced the contents of MPO and MDA in lung tissue (P < 0.05), and inhibited the expression of p-NF-κB in lung tissue (P < 0.05). The results suggest that synthetic salidroside has a protective effect on ALI induced by LPS, and its mechanism is related to inhibiting the phosphorylation of NF-κB and reducing the aggregation of PMN in the lung.
Acute Lung Injury
;
drug therapy
;
Animals
;
Bronchoalveolar Lavage Fluid
;
Dexamethasone
;
pharmacology
;
Glucosides
;
pharmacology
;
Interleukin-1beta
;
metabolism
;
Interleukin-6
;
metabolism
;
Lipopolysaccharides
;
Lung
;
drug effects
;
pathology
;
Male
;
Malondialdehyde
;
metabolism
;
NF-kappa B
;
metabolism
;
Neutrophils
;
cytology
;
Peroxidase
;
metabolism
;
Phenols
;
pharmacology
;
Phosphorylation
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha
;
metabolism
3.Efficacy of epigallocatechin gallate in treatment of alkali burn injury of murine cornea.
Journal of Zhejiang University. Medical sciences 2015;44(1):15-23
OBJECTIVETo evaluate the efficacy of epigallocatechin gallate (EGCG) in treatment of corneal alkali burn injury in mice.
METHODSCorneal alkali burn injury was induced by sodium hydroxide method in C57BL/6J mice. The mice with cornea burns were treated intraperitoneally with EGCG solution or phosphate buffer solution (PBS) respectively. The healing of corneal epithelium, the formation of corneal neovascularization (CNV) and the inflammation reaction were assessed by slit -lamp microscopy and histological examination. Expression of vascular endothelial growth factor (VEGF) mRNA and protein in cornea was evaluated by real -time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively. Myeloperoxidase (MPO) assay was used to quantitatively evaluate the polymorphonuclear neutrophils (PMNs) infiltration in the corneas.
RESULTSThe healing rate of corneal epithelium in EGCG group was significantly higher than that of PBS group at d1, d3 and d7 after treatment (d1: 41.0%±13.0% vs 23.8%±7.6%; d3: 76.6%±7.5% vs 61.2%±6.8%; d7: 87.8%±8.5% vs 74.0%±9.1%; all P <0.05). The CNV scores and the number of CNV in the corneal sections of EGCG group were significantly lower than those of PBS group at d3, d7 and d14 after treatment (CNV score: d3: 1.1±0.5 vs 6.6±1.0; d7: 1.3±0. 3 vs 8.1±1.0; d14: 0.9±0.2 vs 9.2±1.1; CNV number: d3: 1.68±0.61 vs 2.92±0.95; d7: 4.80±1.36 vs 7.92±1.28; d14: 3.64±0.71 vs 5.88±0.76; all P<0.05) . The expression of VEGF protein at d3 (0.19±0.05 vs 0.45±0.08) and d7 (0.42±0.07 vs 0.84±0.09), the expression of VEGF mRNA at d1, d3 and d7 in EGCG group were significantly lower than those in PBS group (all P <0.05). Compared to PBS group, the inflammatory index at d3 (3.2±0.4 vs 3.7±0.5) and d7 (2.3±0.5 vs 4.0±0.0), the number of PMNs in the corneal sections and the MPO values at d3, d7 and d14 in EGCG group were significantly decreased (PMNs: d3: 34.5±15.7 vs 90.0±28.8; d7: 17.1±11.4 vs 54.9±25.9; d14: 12. 8±4.6 vs 39.0±17.9; all P <0.05).
CONCLUSIONIn the murine corneal alkali burn model, intraperitoneal injection of EGCG solution can promote the healing of corneal epithelium, inhibit the formation of CNV and reduce the inflammatory cell infiltration in the corneas.
Alkalies ; Animals ; Burns, Chemical ; drug therapy ; Catechin ; analogs & derivatives ; therapeutic use ; Cornea ; drug effects ; pathology ; Corneal Neovascularization ; prevention & control ; Disease Models, Animal ; Eye Burns ; drug therapy ; Inflammation ; drug therapy ; immunology ; Mice ; Mice, Inbred C57BL ; Neutrophils ; cytology ; RNA, Messenger ; Vascular Endothelial Growth Factor A ; metabolism
4.Inhibitory effect of dexamethasone on expression of cysteine-rich 61 protein in airway epithelial cells of allergic mouse models.
Yong CAO ; Hui-Long CHEN ; Sheng CHENG ; Jun-Gang XIE ; Wei-Ning XIONG ; Yong-Jian XU ; Hui-Juan FANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):628-631
In order to study whether cysteine-rich 61 protein (cyr61) is involved in the pathogenesis of asthma and its relation to airway inflammation, the effect of dexamethasone (Dxm) on the expression of cyr61 in the lung tissues of asthmatic mice was investigated. Forty BALB/c mice were divided into asthma group (n=15), control group (n=10) and Dxm group (n=15). The asthma group was sensitized and challenged by ovalbumin (OVA). The mice in Dxm group were intraperitoneally administered with Dxm after OVA challenge. The expression of cyr61 in the lung tissues was detected by using immunohistochemistry, and that of eotaxin protein in the bronchoalveolar lavage fluid (BALF) by using enzyme-linked immunosorbent assay (ELISA). The number of inflammatory cells in BALF was also analyzed. The results showed that the cyr61 expression was highest in asthma group (P<0.05), followed by Dxm group (P<0.05) and control group. The cyr61 had a positive correlation with the total nucleated cells (r=0.867, P<0.05), especially eosinophils (r=0.856, P<0.05), and eotaxin level (r=0.983, P<0.05) in the BALF. Our findings suggested that cyr61 is expressed in airway epithelial cells and has a positive correlation with eotaxin and number of airway infiltrating eosinophils.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
pharmacology
;
Asthma
;
chemically induced
;
drug therapy
;
metabolism
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
cytology
;
Chemokines, CC
;
metabolism
;
Cysteine-Rich Protein 61
;
biosynthesis
;
Dexamethasone
;
administration & dosage
;
pharmacology
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells
;
drug effects
;
metabolism
;
pathology
;
Female
;
Immunohistochemistry
;
Injections, Intraperitoneal
;
Leukocyte Count
;
Lung
;
metabolism
;
pathology
;
Mice
;
Mice, Inbred BALB C
;
Neutrophils
;
drug effects
;
pathology
;
Ovalbumin
5.Protective effect of dexrazoxane on cardiotoxicity in breast cancer patients who received anthracycline-containing chemotherapy.
Pei WANG ; Sheng ZHANG ; Xiao-bei ZHANG ; Wen-jin LI ; Xiao-meng HAO ; Jin ZHANG
Chinese Journal of Oncology 2013;35(2):135-139
OBJECTIVETo evaluate the cardioprotective effects of dexrazoxane (DEX) on breast cancer patients who received anthracycline-containing chemotherapy.
METHODSA total of 122 breast cancer patients after operation were randomly divided into two groups: The experimental group of 61 cases treated with EPI plus DEX (DEX:EPI = 10:1) as adjuvant chemotherapy regimen, and the control group of 61 cases treated with EPI but without DEX. All patients received four cycles of adjuvant chemotherapy and their changes of specific cardiac functional status and hematology status before and after chemotherapy, as well as non-cardiac toxicity were observed and analyzed.
RESULTSBrain natriuretic peptide (BNP) before chemotherapy and after four cycles of chemotherapy in the control group was (106.78 ± 4.52)×10(-6) µg/ml and (187.19 ± 8.71)×10(-6) µg/ml, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (102.34 ± 8.76)×10(-6) µg/ml and (105.29 ± 7.21)×10(-6) µg/ml, respectively, without a significant difference (P > 0.05). Cardiac troponin T (cTnT) before chemotherapy and after four cycles of chemotherapy in the control group was (12.55 ± 2.73)×10(-3) µg/ml and ( 31.05 ± 7.10 )×10(-3) µg/ml, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (12.70 ± 2.15)×10(-3) µg/ml and (13.65 ± 7.82)×10(-3) µg/ml, respectively, without a significant difference (P > 0.05). The hart rate (HR) before chemotherapy and after four cycles of chemotherapy in the control group, was 75.32 ± 7.14 bpm and 89.60 ± 9.21 bpm, respectively, with a significant difference (P < 0.05). It in the experimental group was 78.60 ± 6.29 bpm and 83.10 ± 7.56 bpm, respectively, without a significant difference (P > 0.05). The left ventricular ejection fraction (LVEF) before chemotherapy and after four cycles of chemotherapy in the control group was (65.23 ± 7.82)% and (55.21 ± 7.23)%, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (64.12 ± 6.25)% and (59.6 ± 4.72)%, respectively, without a significant difference (P > 0.05). The absolute neutrophil count before chemotherapy and after four cycles of chemotherapy in the control group was (3.95 ± 1.36)×10(9)/L and (3.50 ± 1.52)×10(9)/L, respectively, without a significant difference (P > 0.05). It in the experimental group, was (4.96 ± 1.41)×10(9)/L and (3.10 ± 1.26)×10(9)/L, respectively, with a significant difference (P < 0.05). The incidence of grade I-IV bone marrow suppression in the experimental group was 21.3%, 16.4%, 24.6%, and 4.9%, respectively. It in the control group was 16.4%, 11.5%, 9.8%, and 5.5%, respectively, with a significant difference (P < 0.05).
CONCLUSIONSCardiac toxicity after anthracycline treatment in breast cancer patients may be significantly reduced by DEX, without increase of non-cardiac and and non-hematologic toxicity. DEX combined with anthracycline increases the risk of bone marrow suppression, therefore, peripheral blood picture should be monitored or routine bone marrow support may be needed.
Adolescent ; Adult ; Aged ; Antibiotics, Antineoplastic ; adverse effects ; therapeutic use ; Bone Marrow ; drug effects ; Breast Neoplasms ; drug therapy ; metabolism ; pathology ; physiopathology ; surgery ; Cardiovascular Agents ; adverse effects ; therapeutic use ; Chemotherapy, Adjuvant ; Epirubicin ; adverse effects ; therapeutic use ; Female ; Follow-Up Studies ; Heart Rate ; drug effects ; Humans ; Leukocyte Count ; Middle Aged ; Natriuretic Peptide, Brain ; metabolism ; Neutrophils ; cytology ; Razoxane ; adverse effects ; therapeutic use ; Stroke Volume ; drug effects ; Young Adult
6.Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice.
Young Bin OH ; Min AHN ; Sang Myeong LEE ; Hyoung Won KOH ; Sun Hwa LEE ; Suhn Hee KIM ; Byung Hyun PARK
Experimental & Molecular Medicine 2013;45(5):e23-
Recent studies have documented that Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) pathway can modulate the apoptotic program in a myocardial ischemia/reperfusion (I/R) model. To date, however, limited studies have examined the role of JAK3 on myocardial I/R injury. Here, we investigated the potential effects of pharmacological JAK3 inhibition with JANEX-1 in a myocardial I/R model. Mice were subjected to 45 min of ischemia followed by varying periods of reperfusion. JANEX-1 was injected 1 h before ischemia by intraperitoneal injection. Treatment with JANEX-1 significantly decreased plasma creatine kinase and lactate dehydrogenase activities, reduced infarct size, reversed I/R-induced functional deterioration of the myocardium and reduced myocardial apoptosis. Histological analysis revealed an increase in neutrophil and macrophage infiltration within the infarcted area, which was markedly reduced by JANEX-1 treatment. In parallel, in in vitro studies where neutrophils and macrophages were treated with JANEX-1 or isolated from JAK3 knockout mice, there was an impairment in the migration potential toward interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), respectively. Of note, however, JANEX-1 did not affect the expression of IL-8 and MCP-1 in the myocardium. The pharmacological inhibition of JAK3 might represent an effective approach to reduce inflammation-mediated apoptotic damage initiated by myocardial I/R injury.
Animals
;
Apoptosis/drug effects
;
Cell Movement/drug effects
;
Chemokines/pharmacology
;
Heart Function Tests/drug effects
;
Inflammation/pathology
;
Janus Kinase 3/*antagonists & inhibitors/metabolism
;
Macrophages/drug effects/metabolism/pathology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Myocardial Reperfusion Injury/drug therapy/*enzymology/physiopathology/*prevention & control
;
Myocardium/enzymology/pathology
;
Myocytes, Cardiac/drug effects/metabolism/pathology
;
Neutrophils/drug effects/metabolism/pathology
;
Quinazolines/pharmacology/therapeutic use
7.Role of heme oxygenase-1 in dachengqitang ameliorating lipopolysaccharide-induced acute lung injury in mice.
Xinli HUANG ; Songmei WANG ; Yamin FAN ; Chunhua DING ; Yiling LING
China Journal of Chinese Materia Medica 2012;37(2):250-254
To explore the role of heme oxygenase (HO)-1 experimental system in dachengqitang (DD) ameliorating ALI induced by lipopolysaccharide (LPS) in mice. Seventy-five male Kunming mice were randomly divided into control group (normal saline was instilled intratracheally(50 microL/per mouse), LPS group (LPS was instilled intratracheally to replicate ALI model), DD + LPS group, DD + LPS + ZnPP (ZnPP, HO-1 specific inhibitor) group and the DD group. Mice were killed at 6 h after administration. Lung indexes were tested; lung histomorphological changes were observed under microscope, and neutrophils (PMN) number and protein content of bronchoalveolar lavage fluid (BALF) were measured; HO-1 mRNA and protein expression in lung tissue were detected by RT-PCR and Western blot. The results showed that intratracheal instillation of LPS in mice can cause significant morphological changes in lung tissue. Both PMN numbers and protein content in BALF were increased. meanwhile the expressions of HO-1 mRNA and protein in lung tissue were increased. Pretreated with DD and then intratracheally instillated LPS coulde ameliorat lung tissue injury, reduced PMN BALF number and protein content, but increase HO-1 mRNA and protein expression in the lung tissue when compared with LPS. HO-1 inhibitor ZnPP coulde inhibite the ameliorative effect of DD. The results suggest that the ameliorative effect of DD on ALI induced by LPS in mice were related with upregulation HO-1 mRNA and protein.
Acute Lung Injury
;
chemically induced
;
prevention & control
;
Animals
;
Blotting, Western
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
cytology
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Heme Oxygenase-1
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Leukocyte Count
;
Lipopolysaccharides
;
Lung
;
drug effects
;
enzymology
;
pathology
;
Male
;
Mice
;
Neutrophils
;
cytology
;
drug effects
;
Phytotherapy
;
methods
;
Plant Extracts
;
pharmacology
;
Proteins
;
metabolism
;
Protoporphyrins
;
pharmacology
;
Random Allocation
;
Reverse Transcriptase Polymerase Chain Reaction
;
Treatment Outcome
8.Hydrogen sulfide reduces lipopolysaccharide-induced acute lung injury and inhibits expression of phosphorylated p38 MAPK in rats.
Ya-Min FAN ; Xin-Li HUANG ; Ze-Fei DONG ; Yi-Ling LING
Acta Physiologica Sinica 2012;64(6):666-672
To investigate the influence of hydrogen sulfide (H₂S) on p38 MAPK signaling pathway during acute lung injury (ALI) caused by lipopolysaccharide (LPS), the rats were randomly divided into six groups: control group, LPS group, LPS + NaHS group, LPS + PPG (cystathionine-γ-lyase inhibitor) group, NaHS group and PPG group. The rats were sacrificed 6 h after injection and lung tissues were obtained. The structure of lung tissues and the number of polymorphonuclear leucocyte (PMN) was observed under optical microscope; the lung myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were tested; intercellular adhesion molecule-1 (ICAM-1) protein expression changes were detected by immunohistochemical staining; phosphorylated p38 MAPK (p-p38 MAPK) protein expression was detected by Western blotting. The results showed that the lung injury in LPS group was observed, at the same time the MPO activity, the content of MDA, ICAM-1 and p-p38 MAPK protein expressions, the number of PMN were all higher than those in control group (all P < 0.05). Pre-injection of NaHS alleviated the changes induced by LPS, while pre-injection of PPG aggravated those alterations (all P < 0.05). ICAM-1 and p-p38 MAPK protein expressions in lung tissue were positively correlated (r = 0.923, P < 0.01). The results suggest that H2S may reduce LPS-induced ALI through inhibiting the conjugation of p38 MAPK and reducing the expression of ICAM-1.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
Animals
;
Hydrogen Sulfide
;
pharmacology
;
Intercellular Adhesion Molecule-1
;
metabolism
;
Lipopolysaccharides
;
Lung
;
metabolism
;
pathology
;
MAP Kinase Signaling System
;
drug effects
;
Malondialdehyde
;
pharmacology
;
Neutrophils
;
Peroxidase
;
metabolism
;
Phosphorylation
;
Rats
;
Rats, Sprague-Dawley
;
Superoxide Dismutase
;
pharmacology
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
9.Immune state in lung of BALB/c mice with ovalbumin allergy and the effects of fulvotomentoside on lungs of mice.
Chinese Journal of Pediatrics 2012;50(7):531-535
OBJECTIVETo investigate immune state in lung of BALB/c mice with ovalbumin (OVA) allergy and the effects of fulvotomentoside (Ful) on lungs of the mice and provide some clues for the mechanism that patients with food allergies were prone to asthma and observe the effects of the treatment with traditional Chinese medicine.
METHODNinety-six female BALB/c mice were randomly divided into 6 groups. Mice in group 1 and group 2 were sensitized intraperitoneally and challenged intragastrically with OVA and were exposed to phosphate buffer solution and OVA respectively by nebulized inhalation. Mice in group 3 and group 4 were treated with Ful, other processes were the same as the mice in group 1 and group 2, respectively. Mice in group 5 were not challenged intragastrically with OVA and other processes were the same as the mice in group 2. Group 6 was the control group. The number of total leukocytes and cell classification in bronchoalveolar lavage (BALF) were counted, and inflammatory characteristic of lung was scored by staining with hematoxylin and eosin. The protein expressions of transforming growth factor (TGF-β1), interleukin-6 (IL-6), interleukin-17 (IL-17A) in lung of the mice were detected by immunohistochemical method. The activation of neutrophils in lung was assayed by the level of myeloroxidase (MPO).
RESULTThere was no inflammatory cells infiltration in lung of the mice in group 1. Compared with group 6, numbers of total leukocytes and erythrocytes as well as the percentage of neutrophils and lymphocytes were increased in group 2. Inflammatory score and protein expressions of TGF-β1 [(75 437 ± 3 638) vs. (6 118 ± 1 978)], IL-6 [(121 650 ± 25 389) vs. (15 726 ± 9 360)], IL-17A [(252 105 ± 31 651)vs. (72 644 ± 12 285)] in lung were increased, too. Inflammatory score and TGF-β1 (11 054 ± 1 468), IL-6 (50 877 ± 11 744), IL-17A (137 864 ± 28 986) expressions in group 5 were lower than those in group 2. Eosinophils infiltration was significant in group 5. After the treatment with Ful, TGF-β1 expression did not change and IL-6, IL-17A expressions were decreased in lung of the mice that inhaled OVA. It was not enough for Ful to relieve the neutrophil aggregation and improve inflammatory reaction in lung.
CONCLUSIONThe expressions of TGF-β1, IL-6, IL-17A in lung of the mice with OVA allergy were increased markedly after they inhaled specific antigen, which caused serious inflammation that was induced by neutrophil infiltration in lung. Ful could decrease the expressions of IL-6, IL-17A to some extent, but it was not enough to improve pathologic state in lung.
Administration, Inhalation ; Animals ; Bronchoalveolar Lavage Fluid ; cytology ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Female ; Food Hypersensitivity ; immunology ; metabolism ; pathology ; Immunohistochemistry ; Inflammation ; Interleukin-17 ; metabolism ; Interleukin-6 ; metabolism ; Lung Diseases ; immunology ; pathology ; prevention & control ; Mice ; Mice, Inbred BALB C ; Neutrophils ; drug effects ; immunology ; Oleanolic Acid ; analogs & derivatives ; pharmacology ; Ovalbumin ; adverse effects ; immunology ; Saponins ; pharmacology ; Transforming Growth Factor beta1 ; metabolism
10.Protective effects and mechanism of Inonotus obliquus on asthmatic mice.
Guanghai YAN ; Guangyu JIN ; Liangchang LI ; Xiangzheng QIN ; Changji ZHENG ; Guangzhao LI
China Journal of Chinese Materia Medica 2011;36(8):1067-1070
OBJECTIVETo explore the protective effects and mechanism of ethanol extract of Inonotus obliquus (EEIO) injection on asthmatic mice.
METHODOVA was injected intraperitoneally and inhaled to produce the asthmatic model. Thirty two mice were randomly divided into four groups: control group, asthma group and I. obliquus groups of high and low dose. The concentrations of IL-4, IL-5, IL-13 and IFN-gamma in BALF, the phosphor-p38 MAPK in lung tissues were respectively measured by ELISA and Western blotting. The number of inflammatory cells in BALF and histopathology changes were observed.
RESULTIn asthmatic group, the number of inflammatory cells and the concentrations of IL-4, IL-5, IL-13 in BALF and phospho-p38 MAPK in lung tissue were higher, while IFN-gamma were lower than those in normal control mice (P < 0.05). In I. obliquus group, the number of inflammatory cells, the concentrations of IL-4, IL-5, IL-13 in BALF and phosphor-p38 MAPK in lung tissue were lower, but were higher than those in normal control mice (P < 0.05), and histropathology damage was alleviated significantly. There was no significant difference observed among the efficacies in the I. obliquus groups of high and low dose.
CONCLUSIONp38 MAPK may play a role in pathological process of asthma. I. obliquus effectively treats asthma by inhibiting the expression of phosphor-p38 MAPK, correcting the unbalance of IFN-gamma/IL-4 and decreasing the number of inflammatory cells.
Animals ; Anti-Asthmatic Agents ; isolation & purification ; pharmacology ; Asthma ; drug therapy ; metabolism ; pathology ; Basidiomycota ; chemistry ; Basophils ; drug effects ; metabolism ; Bronchoalveolar Lavage Fluid ; cytology ; immunology ; Disease Models, Animal ; Interferon-gamma ; drug effects ; metabolism ; Interleukin-13 ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-5 ; metabolism ; Lung ; pathology ; Lymphocytes ; drug effects ; metabolism ; Mice ; Mice, Inbred BALB C ; Neutrophils ; drug effects ; metabolism ; Phytotherapy ; Plant Extracts ; pharmacology ; p38 Mitogen-Activated Protein Kinases ; drug effects ; metabolism

Result Analysis
Print
Save
E-mail