1.HOCPCA Exerts Neuroprotection on Retinal Ganglion Cells by Binding to CaMKIIα and Modulating Oxidative Stress and Neuroinflammation in Experimental Glaucoma.
Panpan LI ; Xin SHI ; Hanhan LIU ; Yuan FENG ; Xiaosha WANG ; Marc HERB ; Haichao JI ; Stefan WAGNER ; Johannes VOGT ; Verena PROKOSCH
Neuroscience Bulletin 2025;41(8):1329-1346
Neuronal injury in glaucoma persists despite effective intraocular pressure (IOP) control, necessitating neuroprotective strategies for retinal ganglion cells (RGCs). In this study, we investigated the neuroprotective role of the γ-hydroxybutyrate analog HOCPCA in a glaucoma model, focusing on its effects on CaMKII signaling, oxidative stress, and neuroinflammatory responses. Retinal tissue from high IOP animal models was analyzed via proteomics. In vitro mouse retinal explants were subjected to elevated pressure and oxidative stress, followed by HOCPCA treatment. HOCPCA significantly mitigated the RGC loss induced by oxidative stress and elevated pressure, preserving neuronal function. It restored CaMKIIα and β levels, preserving RGC integrity, while also modulating oxidative stress and neuroinflammatory responses. These findings suggest that HOCPCA, through its interaction with CaMKII, holds promise as a neuroprotective therapy for glaucoma.
Animals
;
Retinal Ganglion Cells/metabolism*
;
Glaucoma/pathology*
;
Oxidative Stress/drug effects*
;
Neuroprotective Agents/pharmacology*
;
Mice
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Neuroinflammatory Diseases/drug therapy*
;
Neuroprotection/drug effects*
;
Male
;
Intraocular Pressure/drug effects*
2.Effects of Carpobrotus edulis Extract on Oxidative Stress and 158N Oligodendrocyte Death.
Amira ZARROUK ; Mohammed Ali SMACH ; Jawhar HAFSA ; Randa SGHAIER ; Hatem MAJDOUB ; Mohammed HAMMAMI ; Bassem CHARFEDDINE
Biomedical and Environmental Sciences 2019;32(4):291-299
OBJECTIVE:
Age-related diseases, including neurodegenerative diseases, are associated with oxidative stress and lipid peroxidation, and increase the levels of cholesterol auto-oxidation products such as 7β-hydroxycholesterol (7β-OHC). Thus, it is imperative to identify agents that can prevent 7β-OHC-induced side-effects.
METHODS:
We evaluated the potential protective effects of Carpobrotus edulis ethanol-water extract (EWe) on murine oligodendrocytes (158N) cultured in the absence or presence of 7β-OHC (20 μg/mL, 24 h). The cells were incubated with EWe (20-200 µg/mL) 2 h before 7β-OHC treatment. Mitochondrial activity and cell growth were evaluated with the MTT assay. Photometric methods were used to analyze antioxidant enzyme [catalase (CAT) and glutathione peroxidase (GPx)] activities and the generation of lipid and protein oxidation products [malondialdehyde (MDA), conjugated diene (CD), and carbonylated proteins (CPs)].
RESULTS:
Treatment with 7β-OHC induced cell death and oxidative stress (reflected by alteration in CAT and SOD activities). Overproduction of lipid peroxidation products (MDA and CDs) and CPs was also reported. The cytotoxic effects associated with 7β-OHC were attenuated by 160 μg/mL of EWe of C. edulis. Cell death induced by 7β-OHC treatment was ameliorated, GPx and CAT activities were restored to normal, and MDA, CD, and CP levels were reduced following C. edulis extract treatment.
CONCLUSION
These data demonstrate the protective activities of C. edulis EWe against 7β-OHC-induced disequilibrium in the redox status of 158N cells, indicative of the potential role of this plant extract in the prevention of neurodegenerative diseases.
Aizoaceae
;
Animals
;
Cell Line
;
Drug Evaluation, Preclinical
;
Hydroxycholesterols
;
Mice
;
Neurodegenerative Diseases
;
prevention & control
;
Neuroprotection
;
Oligodendroglia
;
drug effects
;
metabolism
;
Oxidative Stress
;
drug effects
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
3.Neuroprotection of herbs promoting EPO on cerebral ischemia.
Xu LI ; Zhen-ya BAI ; Fei-yan ZHANG ; Xiao-yu XU
China Journal of Chinese Materia Medica 2015;40(12):2265-2271
Amounts of researches show that EPO is characterized with neurotrophic and neuroprotective manner, especially in brain stroke, which attracts a large numbers of researchers to study it. With the accumulating researches on its neuroprotection, many related mechanisms were revealed, such as antioxidant, anti-apoptosis, angiogenesis, anti-inflammatory, which suggests a multiple targets role of EPO on brain stroke. However, because of the high risk of thromboembolism in clinical administration of rhEPO and its analogs, the herbs are potential to be a replacer for its less side effects. Many researchers suggested that a larger of herbs were founded having the action of increasing the endogenous EPO in the model of anemia and cerebral ischemia. At the same time, there herbs were also proved that they had the action of against cerebral ischemia while some without considering the role of EPO in the reports. Considering of the action of promoting EPO of these herbs and the neural protection of EPO, this essay mainly summarizes the studies of herbs promoting EPO in the cerebral ischemia and discusses the mechanism of regulating the EPO of these herbs, for the aim of finding the potential drugs against cerebral ischemia.
Animals
;
Brain Ischemia
;
drug therapy
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Erythropoietin
;
genetics
;
metabolism
;
Humans
;
Neuroprotection
;
drug effects
;
Plants, Medicinal
;
chemistry

Result Analysis
Print
Save
E-mail