1.Functional and distinct roles of Piezo2-mediated mechanotransduction in dental primary afferent neurons.
Pa Reum LEE ; Kihwan LEE ; Ji Min PARK ; Shinae KIM ; Seog Bae OH
International Journal of Oral Science 2025;17(1):45-45
Piezo2, a mechanosensitive ion channel, serves as a crucial mechanotransducer in dental primary afferent (DPA) neurons and is potentially involved in hypersensitivity to mild mechanical irritations observed in dental patients. Given Piezo2's widespread expression across diverse subpopulations of DPA neurons, this study aimed to characterize the mechanosensory properties of Piezo2-expressing DPA neurons with a focus on distinct features of voltage-gated sodium channels (VGSCs) and neuropeptide profiles. Using whole-cell patch-clamp recordings, we observed mechanically activated action potentials (APs) and classified AP waveforms based on the presence or absence of a hump during the repolarization phase. Single-cell reverse transcription polymerase chain reaction combined with patch-clamp recordings revealed specific associations between AP waveforms and molecular properties, including tetrodotoxin-resistant VGSCs (NaV1.8 and NaV1.9) and TRPV1 expression. Reanalysis of the transcriptomic dataset of DPA neurons identified correlations between neuropeptides-including two CGRP isoforms (α-CGRP and β-CGRP), Substance P, and Galanin-and the expression of NaV1.8 and NaV1.9, which were linked to defined AP subtypes. These molecular associations were further validated in Piezo2+ DPA neurons using fluorescence in situ hybridization. Together, these findings highlight the electrophysiological and neurochemical heterogeneity of Piezo2-expressing DPA neurons and their specialized roles in distinct mechanosensory signal transmission.
Ion Channels/physiology*
;
Mechanotransduction, Cellular/physiology*
;
Animals
;
Neurons, Afferent/metabolism*
;
Patch-Clamp Techniques
;
Mice
;
TRPV Cation Channels/metabolism*
;
Action Potentials
;
Rats
2.Melanocortin-4 receptor expression in the rostral ventromedial medulla involved in modulation of nociception in transgenic mice.
Xu-chu PAN ; Yong-tang SONG ; Cheng LIU ; Hong-bing XIANG ; Chuan-jian LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(2):195-198
The rostral ventromedial medulla (RVM) is a prominent component of the descending modulatory system involved in the control of spinal nociceptive transmission. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the RVM, where the neurons involved in modulation of nociception reside. Using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found a large number of GFP-positive neurons in the RVM [nucleus raphe magnus (NRM) and nucleus gigantocellularis pars α (NGCα)]. Fluorescence immunohistochemistry revealed that approximately 10% of MC4R-GFP-positive neurons coexpressed tyrosine hydroxylase, indicating that they were catecholaminergic, whereas 50%-75% of those coexpressed tryptophan hydroxylase, indicating that they were serotonergic. Our findings support the hypothesis that MC4R signaling in RVM may modulate the activity of serotonergic sympathetic outflow sensitive to nociceptive signals, and that MC4R signaling in RVM may contribute to the descending modulation of nociceptive transmission.
Animals
;
Female
;
Male
;
Medulla Oblongata
;
cytology
;
metabolism
;
Mice
;
Mice, Transgenic
;
Neural Pathways
;
cytology
;
metabolism
;
Neurons, Afferent
;
cytology
;
metabolism
;
Nociception
;
physiology
;
Receptor, Melanocortin, Type 4
;
genetics
;
metabolism
;
Serotonergic Neurons
;
metabolism
;
Tyrosine 3-Monooxygenase
;
metabolism
3.Slow rise of intracellular Ca(2+) concentration in rat primary sensory neurons triggered by loureirin B.
Yi-Ning YANG ; Jue-Xu CHEN ; Xue-Yan PANG ; Susumu TERAKAWA ; Xu CHEN ; Yong-Hua JI ; Ke-Lan YONG
Acta Physiologica Sinica 2009;61(2):115-120
In the present study, the intracellular free calcium concentration ([Ca(2+)](i)) in acutely isolated rat dorsal root ganglia (DRG) neurons modulated by loureirin B, an active component of "dragon's blood" which is a kind of Chinese herbal medicine, was determined by the means of Fura-2 based microfluorimetry. It was found that loureirin B could evoke the elevation of [Ca(2+)](i) in a dose-dependent manner. However, the elevation of [Ca(2+)](i) evoked in the calcium free solution was much smaller than that in the standard external cell solution, suggesting that most change of [Ca(2+)](i) was generated by the influx of extracellular Ca(2+), not by the activities of intracellular organelles like Ca(2+) stores and mitochondria. In addition, the mixture of loureirin B and caffeine also induced [Ca(2+)](i) rise, but the peak of [Ca(2+)](i) rise induced by the mixture was significantly lower than that by caffeine alone, which means the triggering pathway and the targets of caffeine are probably involved in loureirin B-induced [Ca(2+)](i) rise. Moreover, compared to the transients induced by caffeine, KCl and capsaicin, the loureirin B-induced [Ca(2+)](i) rise is much slower and more stable. These results indicate that the capability of loureirin B of inducing the [Ca(2+)](i) rise is solid and unique.
Animals
;
Caffeine
;
pharmacology
;
Calcium
;
metabolism
;
Ganglia, Spinal
;
drug effects
;
metabolism
;
Neurons, Afferent
;
drug effects
;
metabolism
;
Rats
;
Resins, Plant
;
pharmacology
4.The study of sodium channels involved in pain responses using specific modulators.
Acta Physiologica Sinica 2008;60(5):628-634
Voltage-gated sodium channels (VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells. Physiological and pharmacological studies have demonstrated that VGSCs play a critical role in chronic pain associated with tissue or nerve injury. Many long-chain peptide toxins (60-76 amino acid residues) purified from the venom of Asian scorpion Buthus martensii Karsch (BmK) are investigated to be sodium channel-specific modulators. The alpha-like neurotoxins that can bind to receptor site 3 of sodium channels, named as BmK I and BmK abT, could induce nociceptive effects in rats. On the contrast, the beta-like neurotoxins that can bind to receptor site 4 of sodium channels, named as BmK AS, BmK AS-1 and BmK IT2, could produce potent anti-nociceptive effects in animal pain models. BmK I could strongly prolong the fast inactivation of tetrodotoxin (TTX)-sensitive Na(+) currents on the rat dorsal root ganglia (DRG) neurons together with the augmentation of peak current amplitude. However, BmK IT2 and BmK ASs, potently suppressed both the peak TTX-resistant and TTX-sensitive Na(+) currents on rat small DRG neurons. Moreover, BmK ASs could decrease the excitability of small DRG neurons. Thus, the nociception/anti-nociception induced by scorpion neurotoxins may attribute to their distinct modulation on sodium channels in primary afferent sensory neurons. Therefore, the sodium channel-specific modulators from BmK venom could be used as not only pharmacological tools for better understanding the roles of VGSCs in pain signal conduction, but also lead molecules in the development of ideal analgesics targeting VGSCs.
Action Potentials
;
Animals
;
Ganglia, Spinal
;
drug effects
;
Neurons, Afferent
;
drug effects
;
Neurotoxins
;
pharmacology
;
Pain
;
drug therapy
;
Peptides
;
pharmacology
;
Rats
;
Scorpion Venoms
;
pharmacology
;
Sodium Channel Blockers
;
pharmacology
;
Sodium Channels
;
metabolism
5.Involvement of hyperpolarization-activated, cyclic nucleotide-gated cation channels in dorsal root ganglion in neuropathic pain.
Acta Physiologica Sinica 2008;60(5):579-580
Dorsal root ganglion (DRG) neurons have peripheral terminals in skin, muscle, and other peripheral tissues, and central terminals in the spinal cord dorsal horn. Hyperpolarization-activated current (I(h)) of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are present in the DRG. The genes encoding HCN channels have four subtypes named HCN1 to HCN4. HCN channels are permeable to both K(+) and Na(+). They underlie the depolarization that modulates the rhythmic generations of action potentials (APs), contribute to the resting membrane potential, and modify the waveform of propagated synaptic and generator potentials. Neuropathic pain is characterized by spontaneous pain, hyperalgesia and allodynia. After spinal nerve injury, the cell bodies of the primary sensory neurons in segmental DRG become hyperexcitable, characterized for some neurons by the presence of spontaneous firing (or ectopic discharge). In the following, we summarize our observations on the role of HCN channels in DRG neurons in neuropathic pain. 1 HCN subtypes and I(h) in DRG neurons Immunohistochemical staining revealed a subgroup of neurons in the DRG that were stained with rabbit polyclonal antibodies specific for HCN1, 2, 3 and 4. The most prominently expressed HCN subtype was HCN1. HCN1-positive cells in DRG were medium to large in size and doubly labeled with neurofilament-200 (NF-200), and were not labeled with isolectin B4 (IB4), a C fiber marker. In contrast, HCN2, 3 or 4 was expressed in all DRG neurons at a lower level. HCN4 was confined to small neurons. DRG neurons expressed I(h). When membrane was hyperpolarized, the channel was activated, mediating a slowly activated, inward current. I(h) was distributed mainly in large and medium-sized DRG neurons. 2 Changes in expression of HCN in DRG after spinal nerve ligation Western blotting was used to detect the changes in the expression of HCN subtypes in the DRG after spinal nerve ligation. HCN1 mRNA and protein were reduced in the DRG whose spinal nerve had been ligated. HCN1 expression was decreased to the lowest level at day 14 and restored at day 28 after spinal nerve ligation. HCN2 mRNA and medium molecular weight protein was also decreased in spinal-nerve ligated DRG. HCN3 and 4 in the same ganglion remained unchanged as evidenced by immunohistochemical staining, until day 28 when they became significantly decreased. HCN4 mRNA in DRG did not change, and protein expression slightly increased. Interestingly, abundant axonal accumulation of HCN channel protein at the injured sites in chronic constriction injury (CCI) rats. Electron immunomicroscopy showed strong positive immunolabeling on the axolemma of myelinated thick axons. 3 Role of I(h) in neuronal excitability and ectopic discharges after spinal nerve ligation ZD7288, a specific I(h) blocker, inhibited I(h) in a time- and concentration-dependent manner. With patch-clamp recording on acutely isolated DRG neurons, it was found that ZD7288 perfusion resulted in a decrease of both I(h) activity and the activation time constant. ZD7288 decreased the number of repetitive APs and caused an increase in AP rise time, accompanied by a small hyperpolarization of the membrane resting potential. The results demonstrated that I(h) was involved in AP firing, and possessed the physiological functions to facilitate neuronal excitability and ectopic firing. Extracellular electrophysiological recording from dorsal root fibers associated with the spinal nerve-ligated ganglion revealed three different firing patterns of ectopic discharges: tonic or regular, bursting and irregular. The average frequency of ectopic discharges and the proportions of active filaments also changed rapidly, both parameters reaching a peak within 24 h then declining gradually in the following days. It was also found that proportions of three different firing patterns changed dynamically over time. The tonic and bursting types were dominant patterns in the first 24 h, while the irregular became the only pattern at day 14. We found that all three firing patterns (tonic, bursting and irregular) were dose- and time-dependently inhibited by local application of ZD7288 to DRG. The rate of suppression was negatively related to the frequency of firing prior to the application of ZD7288. We also found that, while the tonic firing pattern was gradually transformed to bursting type by application of 100 mumol/L ZD7288, it could be transformed to integer multiples firing by 1000 mumol/L ZD7288. 4 Effects of administration of ZD7288 on mechanical allodynia after spinal nerve ligation or CCI After spinal nerve ligation, i.t. injection of 30 mug ZD7288 significantly increased the 50% paw withdrawal threshold, ipsilateral to the ligated nerve. ZD7288 had no effect if the dose was lower than 15 mug, but resulted in motor deficits if the dose was higher than 60 mug. ZD7288 produced much better effects in the early stage (5 or 14 days after spinal nerve ligation) than that in the late stage (28 days after spinal nerve ligation). In CCI rats, ZD7288 application to the injured sited also significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia was inhibited. In conclusion, these results demonstrated that I(h) participated in the development and maintenance of peripheral sensitivity associated with neuropathic pain and that it is a potential target for the design of novel analgesics in the future.
Action Potentials
;
Animals
;
Cyclic Nucleotide-Gated Cation Channels
;
metabolism
;
Ganglia, Spinal
;
physiopathology
;
Hyperalgesia
;
physiopathology
;
Membrane Potentials
;
Nerve Fibers
;
pathology
;
Neuralgia
;
physiopathology
;
Neurons, Afferent
;
pathology
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Nerves
;
pathology
6.Expression of growth hormone secretagogue receptor type 1a in visceral vagal and spinal afferent pathways.
Yun-Dan JIA ; Xi CHEN ; Ming TANG ; Zheng-Yao JIANG
Acta Physiologica Sinica 2008;60(1):149-155
In this study, the expressions of growth hormone secretagogue receptor type 1a (GHS-R1a) in the rat dorsal root ganglion (DRG) and nodose ganglion (NG) were investigated by using immunohistochemistry and in situ hybridization. The results clearly showed the presence of GHS-R1a mRNA and GHS-R1a-positive neurons in the rat DRG and NG. GHS-R1a was also co-localized with calcitonin gene-related peptide (CGRP) in some DRG and NG neurons, indicating the existence of subpopulations of the visceral afferents. The extrinsic primary afferent visceroceptive DRG and NG neurons from the stomach were identified by retrograde tracing fluorogold and stained for GHS-R1a and CGRP. Some neurons both positive for CGRP and GHS-Rla were labled by fluorogold. Our results not only demonstrate the expression of GHS-R1a in the vagal afferents but also provide the first and direct morphological evidence for its presence in the spinal visceral afferents, and gherin might have a modulatory role in the visceral afferent signaling.
Afferent Pathways
;
Animals
;
Calcitonin Gene-Related Peptide
;
metabolism
;
Ganglia, Spinal
;
cytology
;
Immunohistochemistry
;
Neurons, Afferent
;
cytology
;
Nodose Ganglion
;
cytology
;
Rats
;
Receptors, Ghrelin
;
metabolism
;
Stomach
;
innervation
7.Effects of experimental colitis on the expressions of calcitonin gene-related peptide and vanilloid receptor 1 in rat spinal cord sensory neurons.
Xia YANG ; Jun-Qing HAN ; Ran LIU
Acta Physiologica Sinica 2008;60(1):143-148
To study the acute and long-term effects of local gut inflammation on the sensitivity of the spinal sensory neurons, the expressions of vanilloid receptor 1 (VR1) and calcitonin gene-related peptide (CGRP) in the colon-innervated primary sensory neurons in dorsal root ganglia (DRG) were examined in rats with trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis. The neurons projecting to the distal colon were identified by DiI(3) retrograde labelling. Macroscopic examination, mean damage score and myeloperoxidase (MPO) activity were determined to assess the inflammatory status of the colon tissue. The number of CGRP and VR1 immunoreactive neurons at different stages of inflammation (on days 7, 21 and 42 after TNBS treatment) were compared. On day 7 after TNBS treatment, macroscopic damage of the mucosa could be easily detected and the percentage of colon-innervated DRG neurons expressing CGRP and VR1 increased nearly two folds respectively [(95.38±9.45)% vs (42.86±.02)% for CGRP, (89.23±8.21)% vs (32.54±4.58)% for VR1]. When the colon inflammatory reaction was resolved on days 21 and 42 after TNBS treatment, the percentage of colon-innervated DRG neurons expressing CGRP and VR1 were still higher than that in the control group [(86.25±8.21)%, (68.28±7.12)% vs (42.86±5.02)% for CGRP; (67.22±6.52)%, (56.25±4.86)% vs (32.54±4.58)% for VR1]. These results suggest that the local gut inflammation increases the expressions of CGRP and VR1 in gut-innervated DRG sensory neurons. More importantly, this abnormal status persists even after the gut inflammatory reaction has been resolved for certain time.
Animals
;
Calcitonin Gene-Related Peptide
;
metabolism
;
Colitis
;
physiopathology
;
Colon
;
innervation
;
Ganglia, Spinal
;
cytology
;
Inflammation
;
physiopathology
;
Neurons, Afferent
;
cytology
;
Rats
;
Rats, Sprague-Dawley
;
Sensory Receptor Cells
;
cytology
;
Spinal Cord
;
cytology
;
TRPV Cation Channels
;
metabolism
8.Computational analysis of genetic loci required for amphid structure and functions and their possibly corresponding microRNAs in C. elegans.
Ya-Ou HU ; Yang SUN ; Bo-Ping YE ; Da-Yong WANG
Neuroscience Bulletin 2007;23(1):9-20
OBJECTIVETo examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans.
METHODSTotal 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs.
RESULTSTotal 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA (s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns.
CONCLUSIONWe present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.
Animals ; Caenorhabditis elegans ; embryology ; genetics ; Caenorhabditis elegans Proteins ; biosynthesis ; genetics ; Cilia ; genetics ; Computational Biology ; methods ; Gene Expression Regulation, Developmental ; genetics ; Genome ; genetics ; MicroRNAs ; genetics ; Models, Genetic ; Nervous System ; embryology ; metabolism ; Neurons, Afferent ; metabolism ; Sensation ; genetics ; Signal Transduction ; genetics
9.Expression of three distinct families of calcium-activated chloride channel genes in the mouse dorsal root ganglion.
Mohammed AL-JUMAILY ; Alexei KOZLENKOV ; Ilana MECHALY ; Agnes FICHARD ; Valerie MATHA ; Frederique SCAMPS ; Jean VALMIER ; Patrick CARROLL
Neuroscience Bulletin 2007;23(5):293-299
Objective A calcium-activated chloride current (IClCa) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majority of medium and large diameter neurons. Our aim is to identify the molecule(s) underlying this current. Methods Using conventional and quantitative RT-PCR, we examined the expression in DRG of members of three families of genes, which have been shown to have IClCa current inducing properties. Results We showed the detection of transcripts representing several members of these families, i.e. chloride channel calcium-activated (CLCA), Bestrophin and Tweety gene families in adult DRG, in the normal state and 3 d after sciatic nerve section, a model for peripheral nerve injury. Conclusion Our analysis revealed that that mBest1 and Tweety2 appear as the best candidates to play a role in the injury-induced IClCa in DRG neurons.
Animals
;
Axotomy
;
Chloride Channels
;
biosynthesis
;
genetics
;
DNA Primers
;
Ganglia, Spinal
;
metabolism
;
Gene Expression
;
Mice
;
Neurons, Afferent
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Sciatic Nerve
;
physiology
10.Capsaicin-sensitive afferent fibers and endogenous NO mediate the gastric acid secretion and gastric mucosal blood flow in intragastric distention in rats.
Luo GU ; Chang-dong YAN ; Jun DU ; Su-ping TIAN ; Dong-sheng LI
Chinese Journal of Applied Physiology 2003;19(2):193-196
AIM AND METHODSBy hydrogen gas clearance technique to measure gastric mucosal blood flow (GMBF) and a high dose of capsaicin to ablate the capsaicin-sensitive afferent fibers, the roles of capsaicin-sensitive afferent fibers and endogenous NO in the gastric acid secretion and hyperemic response to intragastric distention were studied in rats.
RESULTS(1) There was an increase in acid secretion associated with the increase in GMBF to intragastric distention. (2) Pretreatment with a high dose of capsaicin to ablate afferent fibers completely abolished the GMBF and partially inhibited the acid secretion during the intragastric distention. (3) The increase in GMBF to intragastric distention was completely blocked by pretreatment with L-NAME, whereas the acid secretion was significantly attenuated.
CONCLUSIONCapsaicin-sensitive afferent fibers and endogenous NO are involved in the increases of gastric acid secretion and GMBF.
Animals ; Capsaicin ; pharmacology ; Gastric Acid ; secretion ; Gastric Dilatation ; metabolism ; Gastric Juice ; secretion ; Gastric Mucosa ; blood supply ; Male ; NG-Nitroarginine Methyl Ester ; Neurons, Afferent ; drug effects ; Nitric Oxide ; physiology ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail