1.Temporal-spatial Generation of Astrocytes in the Developing Diencephalon.
Wentong HONG ; Pifang GONG ; Xinjie PAN ; Zhonggan REN ; Yitong LIU ; Guibo QI ; Jun-Liszt LI ; Wenzhi SUN ; Woo-Ping GE ; Chun-Li ZHANG ; Shumin DUAN ; Song QIN
Neuroscience Bulletin 2024;40(1):1-16
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Mice
;
Animals
;
Astrocytes
;
Neuroglia/physiology*
;
Diencephalon
;
Brain
;
Neurons
;
Mammals
2.Astrocytes in Chronic Pain: Cellular and Molecular Mechanisms.
Neuroscience Bulletin 2023;39(3):425-439
Chronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron-glia and glia-glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.
Humans
;
Astrocytes/pathology*
;
Chronic Pain/pathology*
;
Neuroglia/physiology*
;
Neurons/physiology*
;
Synaptic Transmission
;
Chronic Disease
3.The Structure and Function of Glial Networks: Beyond the Neuronal Connections.
Hai-Rong PENG ; Yu-Kai ZHANG ; Jia-Wei ZHOU
Neuroscience Bulletin 2023;39(3):531-540
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Animals
;
Neuroglia/physiology*
;
Neurons/physiology*
;
Astrocytes
;
Microglia/physiology*
;
Oligodendroglia
;
Mammals
4.Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling.
Min WEI ; Yanping SUN ; Shouzhen LI ; Yunuo CHEN ; Longfei LI ; Minghao FANG ; Ronghua SHI ; Dali TONG ; Jutao CHEN ; Yuqian MA ; Kun QU ; Mei ZHANG ; Tian XUE
Protein & Cell 2023;14(8):603-617
Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.
Animals
;
Mice
;
Dark Adaptation
;
Light
;
Retina
;
Retinal Cone Photoreceptor Cells/metabolism*
;
Adaptation, Ocular
;
Neuroglia/physiology*
;
Cell Communication
;
Thyroid Hormones
5.Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury.
An-Kai XU ; Zhe GONG ; Yu-Zhe HE ; Kai-Shun XIA ; Hui-Min TAO
Journal of Zhejiang University. Science. B 2019;20(3):205-218
Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.
Animals
;
Astrocytes/cytology*
;
Axons/physiology*
;
Cell Transplantation
;
Disease Models, Animal
;
Electric Stimulation
;
Humans
;
Microglia/cytology*
;
Motor Neurons/cytology*
;
Nerve Regeneration
;
Neuroglia/cytology*
;
Neuronal Plasticity
;
Neurons/cytology*
;
Oligodendroglia/cytology*
;
Pyramidal Tracts/pathology*
;
Recovery of Function
;
Regenerative Medicine/methods*
;
Spinal Cord Injuries/therapy*
6.Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells.
Fei-Fei XU ; Zi-Bin ZHANG ; Yang-Yang WANG ; Ting-Hua WANG
Neuroscience Bulletin 2018;34(6):1077-1090
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Animals
;
Brain
;
metabolism
;
pathology
;
Brain Ischemia
;
complications
;
pathology
;
Bronchoalveolar Lavage Fluid
;
Cell Hypoxia
;
physiology
;
Cells, Cultured
;
Cerebrovascular Circulation
;
physiology
;
Chromatography, High Pressure Liquid
;
Culture Media, Conditioned
;
pharmacology
;
Disease Models, Animal
;
Endothelial Cells
;
metabolism
;
Gene Expression Regulation
;
physiology
;
Glia Maturation Factor
;
metabolism
;
In Situ Nick-End Labeling
;
Lung Injury
;
etiology
;
metabolism
;
pathology
;
Male
;
Neuroglia
;
metabolism
;
Neurologic Examination
;
Peroxidase
;
metabolism
;
Proteome
;
RNA Interference
;
physiology
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Tandem Mass Spectrometry
7.Optogenetic Glia Manipulation: Possibilities and Future Prospects.
Woo Hyun CHO ; Ellane BARCELON ; Sung Joong LEE
Experimental Neurobiology 2016;25(5):197-204
Our brains are composed of two distinct cell types: neurons and glia. Emerging data from recent investigations show that glial cells, especially astrocytes and microglia, are able to regulate synaptic transmission and thus brain information processing. This suggests that, not only neuronal activity, but communication between neurons and glia also plays a key role in brain function. Thus, it is currently well known that the physiology and pathophysiology of brain function can only be completely understood by considering the interplay between neurons and glia. However, it has not yet been possible to dissect glial cell type-specific roles in higher brain functions in vivo. Meanwhile, the recent development of optogenetics techniques has allowed investigators to manipulate neural activity with unprecedented temporal and spatial precision. Recently, a series of studies suggested the possibility of applying this cutting-edge technique to manipulate glial cell activity. This review briefly discusses the feasibility of optogenetic glia manipulation, which may provide a technical innovation in elucidating the in vivo role of glial cells in complex higher brain functions.
Astrocytes
;
Automatic Data Processing
;
Brain
;
Humans
;
Microglia
;
Neuroglia*
;
Neurons
;
Optogenetics*
;
Physiology
;
Research Personnel
;
Synapses
;
Synaptic Transmission
8.Hypoxic condition promotes olfactory mucosa mesenchymal stem cells to differentiate into neurons and underlying mechanisms.
Yi ZHUO ; Ting YUAN ; Da DUAN ; Lei WANG ; Lite GE ; Pei WU ; Hao WANG ; Ming LU
Journal of Central South University(Medical Sciences) 2016;41(12):1252-1259
To explore whether hypoxic condition could promote the olfactory mucosa mesenchymal stem cells (OM-MSCs) to differentiate into neurons with the olfactory ensheathing cells (OECs) supernatant and the potential mechanisms.
Methods: The OM-MSCs and OECs were isolated and cultured, and they were identified by flow cytometry and immunofluorescence. The OM-MSCs were divided into three groups: a 3%O2+ HIF-1α inhibitors (lificiguat: YC-1) + OECs supernatant group (Group A) , a 3%O2 + OECs supernatant group (Group B) and a 21%O2 + OECs supernatant group (Control group). The neurons, which were differentiated from OM-MSCs, were assessed by immunofluorescence test. The mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α), βIII-tubulin and glial fibrillary acidic portein (GFAP) were detected by quantitative polymerase chain reaction (Q-PCR) and Western blot. The potassium channels were analyzed by patch clamp.
Results: The neurons differentiated from OM-MSCs expressed the most amount of βIII-tubulin, and the result of Q-PCR showed that HIF-1α expression in the Group B was significantly higher than that in the other groups (all P<0.05). Western blot result showed that the βIII-tubulin protein expression was significantly higher and GFAP protein expression was obviously decreased in the Group B (both P<0.05). The patch clamp test confirmed that the potassium channels in the neurons were activated.
Conclusion: Hypoxic condition can significantly increase the neuronal differentiation of OM-MSCs by the OECs supernatant and decrease the production of neuroglia cells, which is associated with the activation of HIF-1 signal pathway.
Blotting, Western
;
Cell Differentiation
;
physiology
;
Cells, Cultured
;
Culture Media, Conditioned
;
chemistry
;
pharmacology
;
Flow Cytometry
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Hypoxia
;
physiopathology
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Indazoles
;
pharmacology
;
Mesenchymal Stem Cells
;
physiology
;
Neurogenesis
;
physiology
;
Neuroglia
;
metabolism
;
physiology
;
Neurons
;
physiology
;
Olfactory Mucosa
;
Potassium Channels
;
Signal Transduction
;
Tubulin
;
metabolism
9.Effects of HIV-1 tat on secretion of TNF-α and IL-1β by U87 cells in AIDS patients with or without AIDS dementia complex.
Li ZHAO ; Shuang Shuang PU ; Wen Hua GAO ; Yuan Yuan CHI ; Hong Ling WEN ; Zhi Yu WANG ; Yan Yan SONG ; Xue Jie YU ;
Biomedical and Environmental Sciences 2014;27(2):111-117
OBJECTIVETo explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis.
METHODSHIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC and an AIDS patient without ADC were cloned for sequence analysis. HIV-1 tat gene sequence alignment was performed by using CLUSTAL W and the phylogentic analysis was conducted by using Neighbor-joining with MEGA4 software. All tat genes were used to construct recombinant retroviral expressing vector MSCV-IRES-GFP/tat. The MSCV-IRES-GFP/tat was cotransfected into 293T cells with pCMV-VSV-G and pUMVC vectors to assemble the recombinant retrovirus. After infection of gliomas U87 cells with equal amount of the recombinant retrovirus, TNF-α, and IL-1β concentrations in the supernatant of U87 cells were determined with ELISA.
RESULTSHIV-1 tat genes derived from peripheral spleen and central basal ganglia of the AIDS patient with ADC and the other one without ADC exhibited genetic variations. Tat variations and amino acid mutation sites existed mainly at Tat protein core functional area (38-47aa). All Tat proteins could induce U87 cells to produce TNF-α and IL-1β, but the level of IL-1β production was different among Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen. The level of Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen were obviously higher than that from the non-ADC patient's basal ganglia.
CONCLUSIONTat protein core functional area (38-47aa) may serve as the key area of enhancing the secretion of IL-1β. This may be related with the neurotoxicity of HIV-1 Tat.
AIDS Dementia Complex ; metabolism ; pathology ; virology ; Adult ; Amino Acid Sequence ; Basal Ganglia ; virology ; Cell Line, Tumor ; Gene Expression Regulation, Viral ; Genes, tat ; HIV-1 ; genetics ; pathogenicity ; Humans ; Interleukin-1beta ; biosynthesis ; genetics ; secretion ; Middle Aged ; Molecular Sequence Data ; Neuroglia ; pathology ; secretion ; Spleen ; virology ; Tumor Necrosis Factor-alpha ; biosynthesis ; genetics ; secretion ; tat Gene Products, Human Immunodeficiency Virus ; genetics ; physiology
10.Suppressing SNAP-25 and reversing glial glutamate transporters relieves neuropathic pain in rats by ameliorating imbalanced neurotransmission.
Chang LIU ; Qu-Lian GUO ; Chang-Sheng HUANG ; Wang-Yuan ZOU ; Zong-Bin SONG
Chinese Medical Journal 2013;126(21):4100-4104
BACKGROUNDNeuropathic pain results from a lesion or disease affecting the somatosensory system at either the peripheral or central level. The transmission of nociception within the central nervous system is subject to modulation by release and reuptake of neurotransmitters, which maintain a dynamic balance through the assembly and disassembly of the SNARE complex as well as a series of neurotransmitter transporters (inhibitory GABA transporters GAT and excitatory glutamate transporters GT). Neuronal hyper-excitability or defected inhibition involved in neuropathic pain is one of the outcomes caused by imbalanced neurotransmission. SNAP-25, which is one of the SNARE complexes, can modulate the release of neurotransmitters. Glia glutamate transporter (GLT) is one of the two glutamate transporters which account for most synaptic glutamate uptake in the CNS. The role of SNAP-25 and GLT as well as GAT is not clearly understood.
METHODSWe used the rat chronic constriction injury (CCI) model for research, and degraded SNAP-25 by a single intrathecal administration of BoNT/A. The mechanical (MWT) and thermal withdrawal latency (TWL) were tested. The level of SNAP-25, GLT, and GAT-1 were assayed using RT-PCR and Western blotting.
RESULTSSNAP-25 was suppressed by a single intrathecal administration of 0.01U BoNT/A and the reduction of SNAP- 25 was correlated with the relief of nociceptive responses in CCI rats. MWT and TWL returned to normal from the 5th to 14th day (P < 0.05) after the administration. On the 14th day after surgery, compared to the sham group, the upregulation of SNAP-25 in CCI rats was reversed after BoNT/A treatment (P < 0.05). The decreased GLT was reversed after BoNT/A treatment but increased GAT-1 was not influenced by BoNT/A treatment.
CONCLUSIONSSNAP-25 and GLT play important roles in the development of neuropathic pain, and the mechanism may involve the imbalance of neurotransmission after peripheral nerve injury. Intrathecal administration of BoNT/A reversed the upregulation of SNAP-25 and downregulation of GLT after CCI, but had no significant effect on the expression of GAT-1.
Amino Acid Transport System X-AG ; genetics ; metabolism ; Animals ; Disease Models, Animal ; GABA Plasma Membrane Transport Proteins ; Male ; Neuralgia ; genetics ; metabolism ; Neuroglia ; metabolism ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Synaptic Transmission ; genetics ; physiology ; Synaptosomal-Associated Protein 25 ; genetics ; metabolism

Result Analysis
Print
Save
E-mail