1.YAP Signaling in Glia: Pivotal Roles in Neurological Development, Regeneration and Diseases.
Lin LIN ; Yinfeng YUAN ; Zhihui HUANG ; Yongjie WANG
Neuroscience Bulletin 2025;41(3):501-519
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing. In this review, we aim to summarize the roles and underlying mechanisms of YAP in glia and glia-related neurological diseases in an integrated perspective.
Humans
;
Animals
;
Neuroglia/metabolism*
;
Signal Transduction/physiology*
;
YAP-Signaling Proteins
;
Nerve Regeneration/physiology*
;
Nervous System Diseases/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
2.Chemokine CCL2 Mediates Neuroglial Crosstalk and Drives Chronic Pain Pathogenesis.
Junyu LU ; Yunxin SHI ; Yongkang LI ; Ziyi NIU ; Shengxi WU ; Ceng LUO ; Rou-Gang XIE
Neuroscience Bulletin 2025;41(12):2296-2321
Chronic pain, frequently comorbid with neuropsychiatric disorders, significantly impairs patients' quality of life and functional capacity. Accumulating evidence implicates the chemokine CCL2 and its receptor CCR2 as key players in chronic pain pathogenesis. This review examines the regulatory mechanisms of the CCL2/CCR2 axis in chronic pain processing at three hierarchical levels: (1) Peripheral Sensitization: CCL2/CCR2 modulates TRPV1, Nav1.8, and HCN2 channels to increase neuronal excitability and CGRP signaling and calcium-dependent exocytosis in peripheral nociceptors to transmit pain. (2) Spinal Cord Central Sensitization: CCL2/CCR2 contributes to NMDAR-dependent plasticity, glial activation, GABAergic disinhibition, and opioid receptor desensitization. (3) Supraspinal Central Networks: CCL2/CCR2 signaling axis mediates the comorbidity mechanisms of pain with anxiety and cognitive impairment within brain regions, including the ACC, CeA, NAc, and hippocampus, and it also increases pain sensitization through the descending facilitation system. Current CCL2/CCR2-targeted therapeutic strategies and their development status are discussed, highlighting novel avenues for chronic pain management.
Humans
;
Chronic Pain/physiopathology*
;
Animals
;
Neuroglia/metabolism*
;
Chemokine CCL2/metabolism*
;
Receptors, CCR2/metabolism*
3.Temporal-spatial Generation of Astrocytes in the Developing Diencephalon.
Wentong HONG ; Pifang GONG ; Xinjie PAN ; Zhonggan REN ; Yitong LIU ; Guibo QI ; Jun-Liszt LI ; Wenzhi SUN ; Woo-Ping GE ; Chun-Li ZHANG ; Shumin DUAN ; Song QIN
Neuroscience Bulletin 2024;40(1):1-16
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Mice
;
Animals
;
Astrocytes
;
Neuroglia/physiology*
;
Diencephalon
;
Brain
;
Neurons
;
Mammals
4.BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.
Zhenmeiyu LI ; Guoping LIU ; Lin YANG ; Mengge SUN ; Zhuangzhi ZHANG ; Zhejun XU ; Yanjing GAO ; Xin JIANG ; Zihao SU ; Xiaosu LI ; Zhengang YANG
Protein & Cell 2024;15(1):21-35
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Animals
;
Mice
;
Humans
;
Ependymoglial Cells/metabolism*
;
Hedgehog Proteins/metabolism*
;
Ferrets/metabolism*
;
Cerebral Cortex
;
Neurogenesis
;
Mammals/metabolism*
;
Neuroglia/metabolism*
;
Bone Morphogenetic Protein 7/metabolism*
5.Immunological Markers for Central Nervous System Glia.
Hao HUANG ; Wanjun HE ; Tao TANG ; Mengsheng QIU
Neuroscience Bulletin 2023;39(3):379-392
Glial cells in the central nervous system (CNS) are composed of oligodendrocytes, astrocytes and microglia. They contribute more than half of the total cells of the CNS, and are essential for neural development and functioning. Studies on the fate specification, differentiation, and functional diversification of glial cells mainly rely on the proper use of cell- or stage-specific molecular markers. However, as cellular markers often exhibit different specificity and sensitivity, careful consideration must be given prior to their application to avoid possible confusion. Here, we provide an updated overview of a list of well-established immunological markers for the labeling of central glia, and discuss the cell-type specificity and stage dependency of their expression.
Neuroglia/metabolism*
;
Central Nervous System
;
Oligodendroglia/metabolism*
;
Astrocytes/metabolism*
;
Microglia
6.The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities.
Qiyuan ZHUANG ; Hui YANG ; Ying MAO
Neuroscience Bulletin 2023;39(3):393-408
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Humans
;
Glioma/metabolism*
;
Neuroglia/metabolism*
;
Carcinogenesis/pathology*
;
Neural Stem Cells/metabolism*
;
Microglia/metabolism*
;
Brain Neoplasms/metabolism*
;
Tumor Microenvironment
7.Updated Understanding of the Glial-Vascular Unit in Central Nervous System Disorders.
Di YAO ; Ruoying ZHANG ; Minjie XIE ; Fengfei DING ; Minghuan WANG ; Wei WANG
Neuroscience Bulletin 2023;39(3):503-518
The concept of the glial-vascular unit (GVU) was raised recently to emphasize the close associations between brain cells and cerebral vessels, and their coordinated reactions to diverse neurological insults from a "glio-centric" view. GVU is a multicellular structure composed of glial cells, perivascular cells, and perivascular space. Each component is closely linked, collectively forming the GVU. The central roles of glial and perivascular cells and their multi-level interconnections in the GVU under normal conditions and in central nervous system (CNS) disorders have not been elucidated in detail. Here, we comprehensively review the intensive interactions between glial cells and perivascular cells in the niche of perivascular space, which take part in the modulation of cerebral blood flow and angiogenesis, formation of the blood-brain barrier, and clearance of neurotoxic wastes. Next, we discuss dysfunctions of the GVU in various neurological diseases, including ischemic stroke, spinal cord injury, Alzheimer's disease, and major depression disorder. In addition, we highlight the possible therapies targeting the GVU, which may have potential clinical applications.
Humans
;
Neuroglia
;
Nervous System Diseases
;
Blood-Brain Barrier
;
Alzheimer Disease
;
Glymphatic System
8.Astrocytes in Chronic Pain: Cellular and Molecular Mechanisms.
Neuroscience Bulletin 2023;39(3):425-439
Chronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron-glia and glia-glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.
Humans
;
Astrocytes/pathology*
;
Chronic Pain/pathology*
;
Neuroglia/physiology*
;
Neurons/physiology*
;
Synaptic Transmission
;
Chronic Disease
9.Roles of NG2 Glia in Cerebral Small Vessel Disease.
Yixi HE ; Zhenghao LI ; Xiaoyu SHI ; Jing DING ; Xin WANG
Neuroscience Bulletin 2023;39(3):519-530
Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.
Animals
;
Neuroglia/metabolism*
;
Central Nervous System/metabolism*
;
Astrocytes/metabolism*
;
Oligodendroglia/metabolism*
;
Cerebral Small Vessel Diseases/metabolism*
;
Antigens/metabolism*
;
Mammals/metabolism*
10.The Structure and Function of Glial Networks: Beyond the Neuronal Connections.
Hai-Rong PENG ; Yu-Kai ZHANG ; Jia-Wei ZHOU
Neuroscience Bulletin 2023;39(3):531-540
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Animals
;
Neuroglia/physiology*
;
Neurons/physiology*
;
Astrocytes
;
Microglia/physiology*
;
Oligodendroglia
;
Mammals

Result Analysis
Print
Save
E-mail