1.Progress on ultrasound-responsive piezoelectric drug delivery system for treatment of neurodegenerative diseases.
Journal of Zhejiang University. Medical sciences 2025;54(4):522-528
Ultrasound has emerged as a non-invasive neural modulation technique. Its mechanisms of action in the brain involve mechanical, cavitation, and thermal effects, which modulate neural activity by activating mechanosensitive ion channels, enhancing cell permeability, and improving blood circulation. The ultrasound-piezo-electric systems, based on the coupling between ultrasound and piezoelectric materials, can generate wireless electrical stimulation to promote neural repair, significantly improving therapeutic outcomes for neurodegenerative diseases and showing potential as a replacement for traditional invasive deep brain stimulation techniques. The ultrasound-responsive piezoelectric drug delivery system combines mechano-electrical conversion capability of piezoelectric materials with the non-invasive penetration advantage of ultrasound. This system achieves synergistic therapeutic effects for neurodegenerative diseases through on-demand drug release and wireless electrical stimulation in deep brain regions. It can effectively overcome the blood-brain barrier limitation, enabling precisely targeted drug delivery to specific brain regions. Simultaneously, it generates electrical stimulation in deep brain areas to exert synergistic neuroreparative effects. Together, these capabilities provide a more precise, efficient, and safe solution for treating neurodegenerative diseases. This review summarizes the neural regulatory mechanisms, technical advantages, and research progress of the ultrasound-responsive piezoelectric drug delivery systems for neurodegenerative disease therapy, aiming to offer novel insights for the field.
Humans
;
Neurodegenerative Diseases/drug therapy*
;
Drug Delivery Systems/methods*
;
Blood-Brain Barrier
;
Ultrasonic Waves
;
Brain
;
Ultrasonic Therapy
;
Deep Brain Stimulation/methods*
2.Rescuing lysosomal/autophagic defects via nanoapproach: implications for lysosomal/autophagic defect-related diseases.
Xiaodan HUANG ; Yue FANG ; Jie SONG ; Yuanjing HAO ; Yuanyuan CAI ; Pengfei WEI ; Na ZHANG
Journal of Zhejiang University. Science. B 2025;26(9):813-842
The dysfunction of the lysosome and autophagy-lysosome system serves as a driving force for neurodegenerative diseases, metabolic disorders, inflammatory conditions, and other related diseases, closely influencing their onset and progression. Therefore, restoring the function of the lysosome or autophagy-lysosome system has become an increasingly crucial therapeutic strategy in disease management. In this review, we will introduce the lysosomal biogenesis, structure, and function, as well as the biological process of the autophagy-lysosome system. Various diseases closely associated with lysosomal/autophagic dysfunction are also reviewed, emphasizing the significance of targeting the function of the lysosome or autophagy-lysosome system in disease treatment. Finally, we focus on engineered nanomaterials that have the capabilities to restore the function of the lysosome or autophagy-lysosome system, and summarize different strategies and methods for achieving this goal. This review aims to elucidate the latest progress in the field of nanomedicine for lysosomal/autophagic defect-related diseases and inspire the development of innovative and clinically valuable nanomedicines.
Humans
;
Lysosomes/physiology*
;
Autophagy/physiology*
;
Nanomedicine/methods*
;
Neurodegenerative Diseases/therapy*
;
Animals
;
Nanostructures
;
Lysosomal Storage Diseases/therapy*
3.Recent advances, strategies, and future perspectives of peptide-based drugs in clinical applications.
Qimeng YANG ; Zhipeng HU ; Hongyu JIANG ; Jialing WANG ; Han HAN ; Wei SHI ; Hai QIAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):31-42
Peptide-based therapies have attracted considerable interest in the treatment of cancer, diabetes, bacterial infections, and neurodegenerative diseases due to their promising therapeutic properties and enhanced safety profiles. This review provides a comprehensive overview of the major trends in peptide drug discovery and development, emphasizing preclinical strategies aimed at improving peptide stability, specificity, and pharmacokinetic properties. It assesses the current applications and challenges of peptide-based drugs in these diseases, illustrating the pharmaceutical areas where peptide-based drugs demonstrate significant potential. Furthermore, this review analyzes the obstacles that must be overcome in the future, aiming to provide valuable insights and references for the continued advancement of peptide-based drugs.
Humans
;
Peptides/pharmacology*
;
Animals
;
Neoplasms/drug therapy*
;
Drug Discovery
;
Neurodegenerative Diseases/drug therapy*
;
Diabetes Mellitus/drug therapy*
4.Progress on the mechanism and treatment of Parkinson's disease-related pathological pain.
Lin-Lin TANG ; Hao-Jun YOU ; Jing LEI
Acta Physiologica Sinica 2023;75(4):595-603
Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor symptoms, including bradykinesia, resting tremor, and progressive rigidity. More recently, non-motor symptoms of PD, such as pain, depression and anxiety, and autonomic dysfunction, have attracted increasing attention from scientists and clinicians. As one of non-motor symptoms, pain has high prevalence and early onset feature. Because the mechanism of PD-related pathological pain is unclear, the clinical therapy for treating PD-related pathological pain is very limited, with a focus on relieving the symptoms. This paper reviewed the clinical features, pathogenesis, and therapeutic strategies of PD-related pathological pain and discussed the mechanism of the chronicity of PD-related pathological pain, hoping to provide useful data for the study of drugs and clinical intervention for PD-related pathological pain.
Humans
;
Parkinson Disease/therapy*
;
Neurodegenerative Diseases
;
Autonomic Nervous System Diseases/complications*
;
Anxiety
;
Pain/etiology*
5.Progress on the role of Kalirin-7 in exercise intervention-mediated improvement of neurodegenerative diseases.
Acta Physiologica Sinica 2023;75(5):659-670
Guanine nucleotide exchange factor Kalirin-7 (Kal-7) is a key factor in synaptic plasticity and plays an important regulatory role in the brain. Abnormal synaptic function leads to the weakening of cognitive functions such as learning and memory, accompanied by abnormal expression of Kal-7, which in turn induces a variety of neurodegenerative diseases. Exercise can upregulate the expression of Kal-7 in related brain regions to alleviate neurodegenerative diseases. By reviewing the literature on Kal-7 and neurodegenerative diseases, as well as the research progress of exercise intervention, this paper summarizes the role and possible mechanism of Kal-7 in the improvement of neurodegenerative diseases by exercise and provides a new rationale for the basic and clinical research on the prevention and treatment of neurodegenerative diseases by exercise.
Humans
;
Neurodegenerative Diseases/therapy*
;
Guanine Nucleotide Exchange Factors/metabolism*
;
Exercise Therapy
6.Research progress on traditional Chinese medicine in treatment of neurodegenerative diseases by delaying neurovascular unit aging.
Chun-Miao YING ; Fei-Xiang LIU ; Xiao-Long PAN ; Fei-Yan FAN ; Na CHEN ; Yun-Ke ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4060-4071
Neurodegenerative diseases are a collective term for a large group of diseases caused by degenerative changes in nerve cells. Aging is the main risk factor for neurodegenerative diseases. The neurovascular unit(NVU) is the smallest functional unit of the brain, which regulates brain blood flow and maintains brain homeostasis. Accelerated aging of NVU cells directly impairs NVU function and leads to the occurrence of various neurodegenerative diseases. The intrinsic mechanisms of NVU cell aging are complex and involve oxidative stress damage, loss of protein homeostasis, DNA damage, mitochondrial dysfunction, immune inflammatory response, and impaired cellular autophagy. In recent years, studies have found that traditional Chinese medicine(TCM) can inhibit NVU aging through multiple pathways and targets, exerting a brain-protective effect. Therefore, this article aimed to provide a theoretical basis for further research on TCM inhibition of NVU cell aging and references for new drug development and clinical applications by reviewing its mechanisms of anti-aging, such as regulating relevant proteins, improving mitochondrial dysfunction, reducing DNA damage, lowering inflammatory response, antioxidant stress, and modulating cellular autophagy.
Humans
;
Medicine, Chinese Traditional
;
Neurodegenerative Diseases/drug therapy*
;
Brain
;
Aging
;
Neurons
;
Blood-Brain Barrier
7.Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders.
Lijuan ZHANG ; Yafei WANG ; Taohui LIU ; Ying MAO ; Bo PENG
Neuroscience Bulletin 2023;39(3):491-502
As prominent immune cells in the central nervous system, microglia constantly monitor the environment and provide neuronal protection, which are important functions for maintaining brain homeostasis. In the diseased brain, microglia are crucial mediators of neuroinflammation that regulates a broad spectrum of cellular responses. In this review, we summarize current knowledge on the multifunctional contributions of microglia to homeostasis and their involvement in neurodegeneration. We further provide a comprehensive overview of therapeutic interventions targeting microglia in neurodegenerative diseases. Notably, we propose microglial depletion and subsequent repopulation as promising replacement therapy. Although microglial replacement therapy is still in its infancy, it will likely be a trend in the development of treatments for neurodegenerative diseases due to its versatility and selectivity.
Humans
;
Microglia/physiology*
;
Central Nervous System
;
Neurodegenerative Diseases/therapy*
;
Brain/physiology*
;
Homeostasis
8.Roles of Gut Microbiota in Pathogenesis of Alzheimer's Disease and Therapeutic Effects of Chinese Medicine.
Ying-Xin SUN ; Xi-Juan JIANG ; Bin LU ; Qing GAO ; Ye-Fei CHEN ; Dan-Bin WU ; Wen-Yun ZENG ; Lin YANG ; Hu-Hu LI ; Bin YU
Chinese journal of integrative medicine 2022;28(11):1048-1056
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive cognitive impairment. The pathogenesis of AD is complex, and its susceptibility and development process are affected by age, genetic and epigenetic factors. Recent studies confirmed that gut microbiota (GM) might contribute to AD through a variety of pathways including hypothalamic pituitary adrenal axis and inflflammatory and immune processes. CM formula, herbs, and monomer enjoy unique advantages to treat and prevent AD. Hence, the purpose of this review is to outline the roles of GM and its core metabolites in the pathogenesis of AD. Research progress of CMs regarding the mechanisms of how they regulate GM to improve cognitive impairment of AD is also reviewed. The authors tried to explore new therapeutic strategies to AD based on the regulation of GM using CM.
Humans
;
Alzheimer Disease/drug therapy*
;
Gastrointestinal Microbiome
;
Hypothalamo-Hypophyseal System
;
Medicine, Chinese Traditional
;
Neurodegenerative Diseases
;
Pituitary-Adrenal System
;
Brain/pathology*
9.CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy.
Yiyang QIN ; Shihua LI ; Xiao-Jiang LI ; Su YANG
Neuroscience Bulletin 2022;38(11):1397-1408
Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing. Being simple to use and highly efficient, CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment. Here, we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.
Humans
;
Gene Editing
;
Huntington Disease/therapy*
;
CRISPR-Cas Systems/genetics*
;
Neurodegenerative Diseases
10.Natural antioxidants in the management of Parkinson's disease: Review of evidence from cell line and animal models.
Reem ABDUL-LATIF ; Ieva STUPANS ; Ayman ALLAHHAM ; Benu ADHIKARI ; Thilini THRIMAWITHANA
Journal of Integrative Medicine 2021;19(4):300-310
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease. It results from the death of dopaminergic neurons. The pathophysiological mechanisms in idiopathic PD include the production of α-synuclein and mitochondrial respiratory function-affecting complex I, caused by reactive oxygen species. Therefore, the use of natural antioxidants in PD may provide an alternative therapy that prevents oxidative stress and reduces disease progression. In this review, the effects of hydroxytyrosol, Ginkgo biloba, Withania somnifera, curcumin, green tea, and Hypericum perforatum in PD animal and cell line models are compared and discussed. The reviewed antioxidants show evidence of protecting neural cells from oxidative stress in animal and cell models of PD. However, the clinical efficacy of these phytochemicals needs to be optimised and further investigated.
Animals
;
Antioxidants/pharmacology*
;
Cell Line
;
Disease Models, Animal
;
Models, Animal
;
Neurodegenerative Diseases
;
Oxidative Stress
;
Parkinson Disease/drug therapy*

Result Analysis
Print
Save
E-mail