1.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
2.The regulatory effect and mechanism of PGC-1α on mitochondrial function.
Song-Hua NAN ; Chao-Jie PENG ; Ying-Lin CUI
Acta Physiologica Sinica 2025;77(2):300-308
Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) is a core member of the PGC-1 family and serves as a transcriptional coactivator, playing a crucial regulatory role in various diseases. Mitochondria, the main site of cellular energy metabolism, are essential for maintaining cell growth and function. Their function is regulated by various transcription factors and coactivators. PGC-1α regulates the biogenesis, dynamics, energy metabolism, calcium homeostasis, and autophagy processes of mitochondria by interacting with multiple nuclear transcription factors, thereby exerting significant effects on mitochondrial function. This review explores the biological functions of PGC-1α and its regulatory effects and related mechanisms on mitochondria, providing important information for our in-depth understanding of the role of PGC-1α in cellular metabolism. The potential role of PGC-1α in metabolic diseases, cardiovascular diseases, and neurodegenerative diseases was also discussed, providing a theoretical basis for the development of new treatment strategies.
Humans
;
Mitochondria/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology*
;
Animals
;
Energy Metabolism/physiology*
;
Neurodegenerative Diseases/physiopathology*
;
Autophagy/physiology*
;
Transcription Factors/physiology*
;
Metabolic Diseases/physiopathology*
;
Cardiovascular Diseases/physiopathology*
3.Progress on the mechanism and application of hyperbaric oxygen therapy for neurodegenerative diseases.
Fang-Fang WANG ; Nan WANG ; Heng-Rong YUAN ; Ji XU ; Jun MA ; Xiao-Chen BAO ; Yi-Qun FANG
Acta Physiologica Sinica 2025;77(2):318-326
In 2040, neurodegenerative diseases (NDD) will overtake cancer as the second leading cause of death after cardiovascular and cerebrovascular diseases. Therefore, the search for effective intervention measures has become the top priority to deal with this difficult burden. Hyperbaric oxygen therapy (HBOT) has been used for the past 50 years to treat conditions such as decompression sickness, carbon monoxide poisoning and radiation damage. In recent years, studies have confirmed that HBOT has good effects in improving cognitive impairment after brain injury and stroke, and alleviating neurodegeneration and dysfunction related to NDD. Here we reviewed the pathogenesis and treatment state of NDD, introduced the application of HBOT in animal models and clinical studies of NDD, and expounded the application potential of HBOT in the treatment of NDD from the perspective of mitochondrial function, neuroinflammation, neurogenesis and angiogenesis, oxidative stress, apoptosis, microcirculation and epigenetics.
Hyperbaric Oxygenation
;
Humans
;
Neurodegenerative Diseases/physiopathology*
;
Animals
;
Oxidative Stress
;
Apoptosis
;
Mitochondria/physiology*
;
Neurogenesis
;
Epigenesis, Genetic
4.Research progress on calcium activities in astrocyte microdomains.
Fu-Sheng DING ; Si-Si YANG ; Liang ZHENG ; Dan MU ; Zhu HUANG ; Jian-Xiong ZHANG
Acta Physiologica Sinica 2025;77(3):534-544
Astrocytes are a crucial type of glial cells in the central nervous system, not only maintaining brain homeostasis, but also actively participating in the transmission of information within the brain. Astrocytes have a complex structure that includes the soma, various levels of processes, and end-feet. With the advancement of genetically encoded calcium indicators and imaging technologies, researchers have discovered numerous localized and small calcium activities in the fine processes and end-feet. These calcium activities were termed as microdomain calcium activities, which significantly differ from the calcium activities in the soma and can influence the activity of local neurons, synapses, and blood vessels. This article elaborates the detection and analysis, characteristics, sources, and functions of microdomain calcium activities, and discusses the impact of aging and neurodegenerative diseases on these activities, aiming to enhance the understanding of the role of astrocytes in the brain and to provide new insights for the treatment of brain disorders.
Astrocytes/cytology*
;
Humans
;
Animals
;
Calcium/metabolism*
;
Calcium Signaling/physiology*
;
Brain/physiology*
;
Aging/physiology*
;
Membrane Microdomains/physiology*
;
Neurodegenerative Diseases/physiopathology*
5.The MAP1 family: a new perspective for exploring unknown functions.
Qing WANG ; Mei LIU ; Zhang-Ji DONG
Acta Physiologica Sinica 2025;77(5):876-892
As an important part of the cytoskeleton, microtubules play a crucial role in many cellular processes, such as cell division, intracellular transport, and maintaining cell morphology. The MAP1 family is an important family of microtubule-associated proteins, which includes three members: MAP1A, MAP1B, and MAP1S. These proteins are widely involved in the dynamic regulation of the cytoskeleton and play a key role in the development and function of the central nervous system, especially in the development and function of neurons. This study reviews the research progress of the MAP1 family, mainly focusing on the structure and function of MAP1 family members, and paying particular attention to their roles in neuronal development and regeneration, regulatory mechanisms, and neurodegenerative diseases.
Humans
;
Animals
;
Microtubule-Associated Proteins/classification*
;
Neurons/cytology*
;
Neurodegenerative Diseases/physiopathology*
;
Microtubules/physiology*
;
Cytoskeleton/physiology*
6.Research progress on the role of dopamine system in regulating hippocampal related brain functions.
Jing REN ; Wei-Yi MO ; Ling WANG ; Guang-Jian NI ; Jia-Jia YANG
Acta Physiologica Sinica 2025;77(5):893-904
Dopamine, as a catecholamine neurotransmitter widely distributed in the central nervous system, is involved in physiological functions such as motivation, arousal, reinforcement, and movement through various dopamine signaling pathways. The hippocampus receives dopaminergic neuron projections from regions such as the ventral tegmental area, locus coeruleus, and substantia nigra. Through D1-like and D2-like receptors, dopamine exerts significant regulatory effects such as spatial navigation, episodic memory, fear, anxiety, and reward. This review mainly summarizes the research progress on the functions of dopamine in the hippocampus from aspects including the sources of dopamine, receptor distribution and function, and the association of hippocampal dopamine system dysregulation with neurodegenerative diseases. The aim is to provide insights into the involvement of the dopamine system in hippocampal functions and the diagnosis and treatment of related diseases.
Hippocampus/physiology*
;
Dopamine/physiology*
;
Humans
;
Animals
;
Receptors, Dopamine D2/physiology*
;
Memory/physiology*
;
Signal Transduction/physiology*
;
Neurodegenerative Diseases/physiopathology*
7.Application of motor behavior evaluation method of zebrafish model in traditional Chinese medicine research.
Xin LI ; Qin-Qin LIANG ; Bing-Yue ZHANG ; Zhong-Shang XIA ; Gang BAI ; Zheng-Cai DU ; Er-Wei HAO ; Jia-Gang DENG ; Xiao-Tao HOU
China Journal of Chinese Materia Medica 2025;50(10):2631-2639
The zebrafish model has attracted much attention due to its strong reproductive ability, short research cycle, and ease of maintenance. It has always been an important vertebrate model system, often used to carry out human disease research. Its motor behavior features have the advantages of being simpler, more intuitive, and quantifiable. In recent years, it has received widespread attention in the study of traditional Chinese medicine(TCM)for the treatment of sleep disorders, neurodegenerative diseases, fatigue, epilepsy, and other diseases. This paper reviews the characteristics of zebrafish motor behavior and its applications in the pharmacodynamic verification and mechanism research of TCM extracts, active ingredients, and TCM compounds, as well as in active ingredient screening and safety evaluation. The paper also analyzes its advantages and disadvantages, with the aim of improving the breadth and depth of zebrafish and its motor behavior applications in the field of TCM research.
Zebrafish/physiology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Drug Evaluation, Preclinical/methods*
;
Animals
;
Sleep Wake Disorders/physiopathology*
;
Epilepsy/physiopathology*
;
Neurodegenerative Diseases/physiopathology*
;
Fatigue/physiopathology*
;
Behavior, Animal/physiology*
;
Motor Activity/physiology*
8.Poly adenosine diphosphate-ribosylation and neurodegenerative diseases.
Journal of Zhejiang University. Medical sciences 2020;49(1):100-106
The morbidity of neurodegenerative diseases are increased in recent years, however, the treatment is limited. Poly ADP-ribosylation (PARylation) is a post-translational modification of protein that catalyzed by poly(ADP-ribose) polymerase (PARP). Studies have shown that PARylation is involved in many neurodegenerative diseases such as stroke, Parkinson's diseases, Alzheimer's disease, amyotrophic lateral sclerosis and so on, by affecting intracellular translocation of protein molecules, protein aggregation, protein activity, and cell death. PARP inhibitors have showed neuroprotective efficacy for neurodegenerative diseases in pre-clinical studies and phase Ⅰ clinical trials. To find new PARP inhibitors with more specific effects and specific pharmacokinetic characteristics will be the new direction for the treatment of neurodegenerative diseases. This paper reviews the recent progress on PARylation in neurodegenerative diseases.
ADP-Ribosylation
;
Humans
;
Neurodegenerative Diseases
;
physiopathology
;
Poly Adenosine Diphosphate Ribose
;
Poly(ADP-ribose) Polymerases
;
metabolism
9.Brain Banking for Research into Neurodegenerative Disorders and Ageing.
Claire E SHEPHERD ; Holly ALVENDIA ; Glenda M HALLIDAY
Neuroscience Bulletin 2019;35(2):283-288
Advances in cellular and molecular biology underpin most current therapeutic advances in medicine. Such advances for neurological and neurodegenerative diseases are hindered by the lack of similar specimens. It is becoming increasingly evident that greater access to human brain tissue is necessary to understand both the cellular biology of these diseases and their variation. Research in these areas is vital to the development of viable therapeutic options for these currently untreatable diseases. The development and coordination of human brain specimen collection through brain banks is evolving. This perspective article from the Sydney Brain Bank reviews data concerning the best ways to collect and store material for different research purposes.
Aging
;
pathology
;
physiology
;
Biomedical Research
;
methods
;
Brain
;
pathology
;
physiopathology
;
Humans
;
Neurodegenerative Diseases
;
pathology
;
physiopathology
;
therapy
;
Tissue Banks
;
Tissue Preservation
10.Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment.
Min LI ; Li WANG ; Jiang-Hong LIU ; Shu-Qin ZHAN
Chinese Medical Journal 2018;131(8):966-973
ObjectiveRapid eye movement sleep behavior disorder (RBD) is characterized by dream enactment and loss of muscle atonia during rapid eye movement sleep. RBD is closely related to α-synucleinopathies including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Many studies have investigated the markers of imaging and neurophysiological, genetic, cognitive, autonomic function of RBD and their predictive value for neurodegenerative diseases. This report reviewed the progress of these studies and discussed their limitations and future research directions.
Data SourcesUsing the combined keywords: "RBD", "neurodegenerative disease", "Parkinson disease", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to January 1, 2018.
Study SelectionA total of 150 published articles were initially identified citations. Of the 150 articles, 92 articles were selected after further detailed review. This study referred to all the important English literature in full.
ResultsSingle-nucleotide polymorphisms in SCARB2 (rs6812193) and MAPT (rs12185268) were significantly associated with RBD. The olfactory loss, autonomic dysfunction, marked electroencephalogram slowing during both wakefulness and rapid eye movement sleep, and cognitive impairments were potential predictive markers for RBD conversion to neurodegenerative diseases. Traditional structural imaging studies reported relatively inconsistent results, whereas reduced functional connectivity between the left putamen and substantia nigra and dopamine transporter uptake demonstrated by functional imaging techniques were relatively consistent findings.
ConclusionsMore longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated. There is a need for more treatment trials to determine the effectiveness of interventions of RBD on preventing the conversion to neurodegenerative diseases.
Biomarkers ; blood ; Humans ; Lysosome-Associated Membrane Glycoproteins ; genetics ; Neurodegenerative Diseases ; blood ; genetics ; physiopathology ; Parkinson Disease ; blood ; genetics ; physiopathology ; Polymorphism, Single Nucleotide ; genetics ; REM Sleep Behavior Disorder ; blood ; genetics ; physiopathology ; Receptors, Scavenger ; genetics ; tau Proteins ; genetics

Result Analysis
Print
Save
E-mail