1.The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities.
Qiyuan ZHUANG ; Hui YANG ; Ying MAO
Neuroscience Bulletin 2023;39(3):393-408
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Humans
;
Glioma/metabolism*
;
Neuroglia/metabolism*
;
Carcinogenesis/pathology*
;
Neural Stem Cells/metabolism*
;
Microglia/metabolism*
;
Brain Neoplasms/metabolism*
;
Tumor Microenvironment
2.Temporal and spatial stability of the EM/PM molecular subtypes in adult diffuse glioma.
Jing FENG ; Zheng ZHAO ; Yanfei WEI ; Zhaoshi BAO ; Wei ZHANG ; Fan WU ; Guanzhang LI ; Zhiyan SUN ; Yanli TAN ; Jiuyi LI ; Yunqiu ZHANG ; Zejun DUAN ; Xueling QI ; Kai YU ; Zhengmin CONG ; Junjie YANG ; Yaxin WANG ; Yingyu SUN ; Fuchou TANG ; Xiaodong SU ; Chuan FANG ; Tao JIANG ; Xiaolong FAN
Frontiers of Medicine 2023;17(2):240-262
Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities.
Humans
;
Brain Neoplasms/pathology*
;
Neoplasm Recurrence, Local/metabolism*
;
Glioma/pathology*
;
Neural Stem Cells/pathology*
;
Oligodendrocyte Precursor Cells/pathology*
;
Tumor Microenvironment
3.Diffuse Intrinsic Pontine Gliomas Exhibit Cell Biological and Molecular Signatures of Fetal Hindbrain-Derived Neural Progenitor Cells.
Yu SUN ; Cheng XU ; Changcun PAN ; Xin CHEN ; Yibo GENG ; Yuliang WU ; Peng ZHANG ; Wenhao WU ; Yu WANG ; Deling LI ; Zhen WU ; Junting ZHANG ; Qiaoran XI ; Liwei ZHANG
Neuroscience Bulletin 2019;35(2):216-224
Diffuse intrinsic pontine glioma (DIPG) is the main cause of brain tumor-related death among children. Until now, there is still a lack of effective therapy with prolonged overall survival for this disease. A typical strategy for preclinical cancer research is to find out the molecular differences between tumor tissue and para-tumor normal tissue, in order to identify potential therapeutic targets. Unfortunately, it is impossible to obtain normal tissue for DIPG because of the vital functions of the pons. Here we report the human fetal hindbrain-derived neural progenitor cells (pontine progenitor cells, PPCs) as normal control cells for DIPG. The PPCs not only harbored similar cell biological and molecular signatures as DIPG glioma stem cells, but also had the potential to be immortalized by the DIPG-specific mutation H3K27M in vitro. These findings provide researchers with a candidate normal control and a potential medicine carrier for preclinical research on DIPG.
Animals
;
Brain Stem Neoplasms
;
genetics
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cellular Senescence
;
Female
;
Glioma
;
genetics
;
metabolism
;
pathology
;
Histones
;
genetics
;
Humans
;
Mice, Inbred NOD
;
Mice, SCID
;
Neoplasm Transplantation
;
Neoplastic Stem Cells
;
drug effects
;
metabolism
;
pathology
;
Neural Stem Cells
;
drug effects
;
metabolism
;
pathology
;
Pons
;
embryology
;
metabolism
;
pathology
;
Primary Cell Culture
4.Molecular Characterization of Primary Human Astrocytes Using Digital Gene Expression Analysis
Korean Journal of Neurotrauma 2019;15(1):2-10
OBJECTIVE: Astrocyte dysfunctions are related to several central nervous system (CNS) pathologies. Transcriptomic profiling of human mRNAs to investigate astrocyte functions may provide the basic molecular-biological data pertaining to the cellular activities of astrocytes. METHODS: Human Primary astrocytes (HPAs) and human neural stem cell line (HB1.F3) were used for differential digital gene analysis. In this study, a massively parallel sequencing platform, next-generation sequencing (NGS), was used to obtain the digital gene expression (DGE) data from HPAs. A comparative analysis of the DGE from HPA and HB1.F3 cells was performed. Sequencing was performed using NGS platform, and subsequently, bioinformatic analyses were implemented to reveal the identity of the pathways, relatively up- or down-regulated in HPA cells. RESULTS: The top, novel canonical pathways up-regulated in HPA cells than in the HB1.F3 cells were “Cyclins and cell cycle regulation,” “Integrin signaling,” “Regulation of eIF4 and p70S6K signaling,” “Wnt/β-catenin signaling,” “mTOR signaling,” “Aryl hydrocarbon receptor signaling,” “Hippo signaling,” “RhoA signaling,” “Signaling by Rho family GTPases,” and “Glioma signaling” pathways. The down-regulated pathways were “Cell cycle: G1/S checkpoint regulation,” “eIF2 signaling,” “Cell cycle: G2/M DNA damage checkpoint regulation,” “Telomerase signaling,” “RhoGDI signaling,” “NRF2-mediated oxidative stress response,” “ERK/MAPK signaling,” “ATM signaling,” “Pancreatic adenocarcinoma signaling,” “VEGF signaling,” and “Role of CHK proteins in cell cycle checkpoint control” pathways. CONCLUSION: This study would be a good reference to understand astrocyte functions at the molecular level, and to develop a diagnostic test, based on the DGE pattern of astrocytes, as a powerful, new clinical tool in many CNS diseases.
Adenocarcinoma
;
Astrocytes
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Central Nervous System
;
Central Nervous System Diseases
;
Computational Biology
;
Diagnostic Tests, Routine
;
DNA Damage
;
Gene Expression
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Neural Stem Cells
;
Oxidative Stress
;
Pathology
;
Ribosomal Protein S6 Kinases, 70-kDa
;
RNA, Messenger
5.Proliferation and differentiation of endogenous neural stem cells in subventricular zone in rats after traumatic craniocerebral injury.
Li-Sen SUI ; Jia-Bin YU ; Xiao-Dan JIANG
Journal of Southern Medical University 2016;36(8):1094-1099
OBJECTIVETo observe the time course of proliferation and differentiation of neural stem cells (NSCs) in the subventricular zone (SVZ) of rats following traumatic craniocerebral injury (TBI).
METHODSForty-eight SD rats were randomized into 3 groups, namely the control group without any treatment, the sham-operated group with scalp incision and preparation of a cranial window, and TBI group with craniocerebral injury induced by Feeney's method. With nestin and BrdU as two cell markers, NSE as the neuron-specific marker and GFAP as the glial cell marker, immunofluorescence assay with double labeled antibodies was performed to examine the proliferation and differentiation of endogenous NSCs in the SVZ at different time points after TBI.
RESULTSs The numbers of cells positive for nestin/NSE, nestin/GFAP, BrdU/NSE, and BrdU/GFAP in the SVZ of the rats increased significantly after TBI. The positive cells began to increase at 1 day after TBI, reached the peak level at day 3 and became normal at day 14, showing significant differences between the time points of measurement following TBI and from the cell numbers in the control group measured at the same time points. The cells positive for nestin/ GFAP showed the most distinct increase in the SVZ of the rats with TBI.
CONCLUSIONTBI results in mobilization of the NSCs in the SVZ on the injured side to cause the proliferation and differentiation of the endogenous NSCs. The SVZ is one of the most important germinal centers of NSC proliferation and differentiation.
Animals ; Bromodeoxyuridine ; metabolism ; Cell Differentiation ; Cell Proliferation ; Craniocerebral Trauma ; pathology ; Glial Fibrillary Acidic Protein ; metabolism ; Lateral Ventricles ; cytology ; Nestin ; metabolism ; Neural Stem Cells ; cytology ; Neuroglia ; cytology ; Neurons ; cytology ; Phosphopyruvate Hydratase ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley
6.Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs.
Lina FU ; Xiuling XU ; Ruotong REN ; Jun WU ; Weiqi ZHANG ; Jiping YANG ; Xiaoqing REN ; Si WANG ; Yang ZHAO ; Liang SUN ; Yang YU ; Zhaoxia WANG ; Ze YANG ; Yun YUAN ; Jie QIAO ; Juan Carlos IZPISUA BELMONTE ; Jing QU ; Guang-Hui LIU
Protein & Cell 2016;7(3):210-221
Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.
DNA Damage
;
DNA Repair
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Female
;
Humans
;
Induced Pluripotent Stem Cells
;
metabolism
;
pathology
;
Male
;
Models, Biological
;
Mutation
;
Neural Stem Cells
;
metabolism
;
pathology
;
Xeroderma Pigmentosum
;
genetics
;
metabolism
;
pathology
7.Transplantation of human embryonic neural stem cells protects rats against cerebral ischemic injury.
Xiao-Yan LIU ; Chang-Peng WANG ; Ming LIU ; Gang JI ; Jing-Chun GUO
Acta Physiologica Sinica 2014;66(6):691-701
The purpose of this study is to explore the fate and effect of human embryonic neural stem cells (hNSCs) after transplantation into ipsilateral lateral ventricle of stroke rats. Adult rats were exposed to one-hour transient middle cerebral artery occlusion (MCAO), and then hNSCs were transplanted into ipsilateral lateral ventricle 7 days after reperfusion. Infarct volume was calculated by cresyl violet staining. The improvements of neural functions were assessed by behavioral tests. Immunofluorescence staining was performed to observe the migration and differentiation of transplanted hNSCs. The results showed that transplanted hNSCs significantly reduced ischemia-induced infarction in MCAO rats, and improved neural functional restoration when assessed by rotarod, footfault and corner-turn tests. The grafted cells migrated predominantly to several specific brain regions, such as corpus callosum and peri-infarct area. Furthermore, these cells differentiated into oligodendrocytes and astrocytes in corpus callosum, and neurons in peri-infarct parenchyma. These results suggest that transplanted hNSCs through lateral ventricle of the ischemic side may exert effective therapeutic effects on stroke rats via migration and differentiation in specific brain regions.
Animals
;
Astrocytes
;
cytology
;
Brain
;
cytology
;
pathology
;
Cell Differentiation
;
Cell Movement
;
Humans
;
Infarction, Middle Cerebral Artery
;
therapy
;
Lateral Ventricles
;
Neural Stem Cells
;
transplantation
;
Neurons
;
cytology
;
Oligodendroglia
;
cytology
;
Rats
;
Rats, Sprague-Dawley
8.Transplanted epidermal neural crest stem cell in a peripheral nerve gap.
Lu ZHANG ; Jieyuan ZHANG ; Bingcang LI ; Zheng LIU ; Bin LIU
Chinese Journal of Biotechnology 2014;30(4):605-614
Neural crest stem cells originated from hair follicle (epidermal neural crest stem cell, EPI-NCSC) are easy to obtain and have potentials to differentiate into various tissues, which make them eminent seed cells for tissue engineering. EPI-NCSC is now used to repair nerve injury, especially, the spinal cord injury. To investigate their effects on repairing peripheral nerve injury, EPI-NCSC from a GFP-SD rat were primarily cultured on coated dishes and on a poly lactic acid coglycolic acid copolymer (PLGA) membrane. Methyl thiazolyl tetrazolium (MTT) assay showed that the initial adhesion rate of EPI-NCSC was 89.7% on PLGA membrane, and the relative growth rates were 89.3%, 87.6%, 85.6%, and 96.6% on the 1st, 3rd, 5th, 7th day respectively. Cell cycles and DNA ploidy analysis demonstrated that cell cycles and proliferation indexes of cultured EPI-NCSC had the same variation pattern on coated dishes and PLGA membrane. Then cultured EPI-NCSC were mixed with equal amount of extracellular matrix and injected into a PLGA conduit to connect a 10 mm surgery excision gap of rat sciatic nerve, Dulbecco's Modified Eagle's medium (DMEM) was used to substitute EPI-NCSC in the control group. After four weeks of transplantation, the defected sciatic nerve achieved a histological restoration, the sensory function of rat hind limb was partly recovered and the sciatic nerve index was also improved. The above results showed that a PLGA conduit filled with EPI-NCSC has a good repair effect on the peripheral nerve injury.
Animals
;
Cells, Cultured
;
Neural Crest
;
cytology
;
Neural Stem Cells
;
cytology
;
Rats
;
Rats, Sprague-Dawley
;
Sciatic Nerve
;
pathology
;
Spinal Cord Injuries
;
Stem Cell Transplantation
;
Tissue Engineering
9.Induced pluripotent stem cells and neurological disease models.
Sa CAI ; Ying-Shing CHAN ; Daisy Kwok-Yan SHUM
Acta Physiologica Sinica 2014;66(1):55-66
The availability of human stem cells heralds a new era for in vitro cell-based modeling of neurodevelopmental and neurodegenerative diseases. Adding to the excitement is the discovery that somatic cells of patients can be reprogrammed to a pluripotent state from which neural lineage cells that carry the disease genotype can be derived. These in vitro cell-based models of neurological diseases hold promise for monitoring of disease initiation and progression, and for testing of new drug treatments on the patient-derived cells. In this review, we focus on the prospective applications of different stem cell types for disease modeling and drug screening. We also highlight how the availability of patient-specific induced pluripotent stem cells (iPS cells) offers a unique opportunity for studying and modeling human neurodevelopmental and neurodegenerative diseases in vitro and for testing small molecules or other potential therapies for these disorders. Finally, the limitations of this technology from the standpoint of reprogramming efficiency and therapeutic safety are discussed.
Drug Evaluation, Preclinical
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
pathology
;
Models, Neurological
;
Nervous System Diseases
;
physiopathology
;
Neural Stem Cells
;
pathology
;
Neurodegenerative Diseases
;
physiopathology
10.Effect of basic fibroblast growth factor on endogenous neural stem cell in rat cerebral cortex with global cerebral ischemia-reperfusion.
Mingxin REN ; Xiaohui DENG ; Yiwei GUO ; Fengjin ZHENG ; Zhibo FENG
Journal of Biomedical Engineering 2014;31(4):846-849
The present paper is aimedto investigate the effect of basic fibroblast growth factor (bFGF) on proliferation, migration and differentiation of endogenous neural stem cell in rat cerebral cortex with global brain ischemia-reperfusion. A global brain ischemia-reperfusion model was established. Immunohistochemistry was used to observe the pathological changes and the expression of BrdU and Nestin in cerebral cortex. RT-PCR was used to measure the NSE mRNA in brain tissue. The results of measurements indicated that in sham operation group, there was no positive cell in cerebral cortex, and the content of NSE mRNA did not change. In the operation group, the expression of BrdU and Nestin increased significantly at the end of the 3rd day, and peaked on the 7th day. NSE mRNA expression did not significantly increase. In bFGF group, compared with sham operation group and model group, the number of BrdU-positive and Nestin-positive cells increased significantly at each time point (P<0. 05), and peaked at the end of the 11th day, and the content of NSE mRNA increased significantly (P<0. 05). This research demonstrated that the proliferation of endogenous neural stem cells in situ could be induced by global cerebral ischemia and reperfu- sion, and could be promoted and extended by bFGF. In additiion, bFGF might promote endogenous neural stem cells differentiated into neurons.
Animals
;
Brain Ischemia
;
pathology
;
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Cerebral Cortex
;
cytology
;
metabolism
;
pathology
;
Fibroblast Growth Factor 2
;
pharmacology
;
Nestin
;
metabolism
;
Neural Stem Cells
;
drug effects
;
Rats
;
Reperfusion Injury

Result Analysis
Print
Save
E-mail