1.Knockdown of NPTX1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.
Ting SHUAI ; Yanyan GUO ; Chunping LIN ; Xiaomei HOU ; Chanyuan JIN
Journal of Peking University(Health Sciences) 2025;57(1):7-12
OBJECTIVE:
To initially investigate the function of neuronal pentraxin 1 (NPTX1) gene on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).
METHODS:
hBMSCs were induced to undergo osteogenic differentiation, and then RNA was collected at different time points, namely 0, 3, 7, 10 and 14 d. The mRNA expression levels of key genes related with osteogenic differentiation, including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and NPTX1, were detected on the basis of quantitative real-time polymerase chain reaction (qPCR) technology. In order to establish a stable NPTX1-knockdown hBMSCs cell line, NPTX1 shRNA lentivirus was constructed and used to infect hBMSCs. ALP staining, alizarin red (AR) staining, and qPCR were employed to assess the impact of NPTX1-knockdown on the osteogenic differentiation ability of hBMSCs.
RESULTS:
The results showed that during the osteogenic differentiation of hBMSCs in vitro, the mRNA expression levels of osteogenic genes RUNX2, ALP and OCN significantly increased compared with 0 d, while NPTX1 expression decreased markedly (P < 0.01) as the osteogenic induction period exten-ded. At 72 h post-infection with lentivirus, the result of qPCR indicated that the knockdown efficiency of NPTX1 was over 60%. After knocking down NPTX1 in hBMSCs, RNA was extracted from both the NPTX1-knockdown group (sh NPTX1 group) and the control group (shNC group) cultured in regular proliferation medium. The results of qPCR showed that the expression levels of osteogenic-related genes RUNX2 and osterix (OSX) were significantly higher in the sh NPTX1 group compared with the shNC group (P < 0.01). ALP staining revealed a significantly deeper coloration in the sh NPTX1 group than in the shNC group at the end of 7 d of osteogenic induction. AR staining demonstrated a marked increase in mineralized nodules in the sh NPTX1 group compared with the shNC group at the end of 14 d of osteogenic induction.
CONCLUSION
NPTX1 exerts a modulatory role in the osteogenic differentiation of hBMSCs, and its knockdown has been found to enhance the osteogenic differentiation of hBMSCs. This finding implies that NPTX1 could potentially serve as a therapeutic target for the treatment of osteogenic abnormalities, including osteoporosis.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis/genetics*
;
Cell Differentiation/genetics*
;
Nerve Tissue Proteins/genetics*
;
Cells, Cultured
;
C-Reactive Protein/genetics*
;
RNA, Small Interfering/genetics*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Bone Marrow Cells/cytology*
;
Gene Knockdown Techniques
;
Osteocalcin/metabolism*
;
Alkaline Phosphatase/metabolism*
;
RNA, Messenger/metabolism*
2.Effect of retinoic acid on delayed encephalopathy after acute carbon monoxide poisoning: Role of the lncRNA SNHG15/LINGO-1/BDNF/TrkB axis.
Fangling HUANG ; Su'e WANG ; Zhengrong PENG ; Xu HUANG ; Sufen BAI
Journal of Central South University(Medical Sciences) 2025;50(6):955-969
OBJECTIVES:
The neurotoxicity of carbon monoxide (CO) to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Our previous study found that retinoic acid (RA) can suppress the neurotoxic effects of CO. This study further explores, in vivo and in vitro, the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.
METHODS:
A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO, and a DEACMP animal model was established in adult Kunming mice. Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Annexin V/propidium iodide (PI) double staining. The transcriptional and protein expression of each gene was detected using real-time fluorescence quantitative PCR (RT-qPCR) and Western blotting. Long noncoding RNA (lncRNA) SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes. In DEACMP mice, SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.
RESULTS:
RA at 10 and 20 μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes, downregulation of SNHG15 and LINGO-1, and upregulation of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) (all P<0.05). Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity (all P<0.05). Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels (all P<0.05). Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP (all P<0.05).
CONCLUSIONS
RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes, thereby reducing central nervous system injury and exerting neuroprotective effects. LncRNA SNHG15 and LINGO-1 are key molecules mediating RA-induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway. These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
Animals
;
RNA, Long Noncoding/physiology*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Carbon Monoxide Poisoning/complications*
;
Mice
;
Tretinoin/pharmacology*
;
Nerve Tissue Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Apoptosis/drug effects*
;
Hippocampus/cytology*
;
Receptor, trkB/metabolism*
;
Neurons/drug effects*
;
Male
;
Brain Diseases/etiology*
;
Oligodendroglia/drug effects*
;
Signal Transduction
;
Cell Line
3.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
4.Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury.
Xin-Liang WANG ; Zong-Yi WANG ; Xing-Han CHEN ; Yuan CAI ; Bing HU
Neuroscience Bulletin 2025;41(4):633-648
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Nerve Regeneration/physiology*
;
Mitochondria/metabolism*
;
Zebrafish Proteins/genetics*
;
Axons/metabolism*
;
Signal Transduction/physiology*
;
Axonal Transport/physiology*
;
Nerve Tissue Proteins/genetics*
5.Deciphering the Role of Shank3 in Dendritic Morphology and Synaptic Function Across Postnatal Developmental Stages in the Shank3B KO Mouse.
Jing YANG ; Guaiguai MA ; Xiaohui DU ; Jinyi XIE ; Mengmeng WANG ; Wenting WANG ; Baolin GUO ; Shengxi WU
Neuroscience Bulletin 2025;41(4):583-599
Autism Spectrum Disorder (ASD) is marked by early-onset neurodevelopmental anomalies, yet the temporal dynamics of genetic contributions to these processes remain insufficiently understood. This study aimed to elucidate the role of the Shank3 gene, known to be associated with monogenic causes of autism, in early developmental processes to inform the timing and mechanisms for potential interventions for ASD. Utilizing the Shank3B knockout (KO) mouse model, we examined Shank3 expression and its impact on neuronal maturation through Golgi staining for dendritic morphology and electrophysiological recordings to measure synaptic function in the anterior cingulate cortex (ACC) across different postnatal stages. Our longitudinal analysis revealed that, while Shank3B KO mice displayed normal neuronal morphology at one week postnatal, significant impairments in dendritic growth and synaptic activity emerged by two to three weeks. These findings highlight the critical developmental window during which Shank3 is essential for neuronal and synaptic maturation in the ACC.
Animals
;
Nerve Tissue Proteins/metabolism*
;
Mice, Knockout
;
Dendrites/metabolism*
;
Mice
;
Synapses/metabolism*
;
Gyrus Cinguli/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Autism Spectrum Disorder/genetics*
;
Microfilament Proteins
6.SOX11-mediated CBLN2 Upregulation Contributes to Neuropathic Pain through NF-κB-Driven Neuroinflammation in Dorsal Root Ganglia of Mice.
Ling-Jie MA ; Tian WANG ; Ting XIE ; Lin-Peng ZHU ; Zuo-Hao YAO ; Meng-Na LI ; Bao-Tong YUAN ; Xiao-Bo WU ; Yong-Jing GAO ; Yi-Bin QIN
Neuroscience Bulletin 2025;41(12):2201-2217
Neuropathic pain, a debilitating condition caused by dysfunction of the somatosensory nervous system, remains difficult to treat due to limited understanding of its molecular mechanisms. Bioinformatics analysis identified cerebellin 2 (CBLN2) as highly enriched in human and murine proprioceptive and nociceptive neurons. We found that CBLN2 expression is persistently upregulated in dorsal root ganglia (DRG) following spinal nerve ligation (SNL) in mice. In addition, transcription factor SOX11 binds to 12 cis-regulatory elements within the Cbln2 promoter to enhance its transcription. SNL also induced SOX11 upregulation, with SOX11 and CBLN2 co-localized in nociceptive neurons. The siRNA-mediated knockdown of Sox11 or Cbln2 attenuated SNL-induced mechanical allodynia and thermal hyperalgesia. High-throughput sequencing of DRG following intrathecal injection of CBLN2 revealed widespread gene expression changes, including upregulation of numerous NF-κB downstream targets. Consistently, CBLN2 activated NF-κB signaling, and inhibition with pyrrolidine dithiocarbamate reduced CBLN2-induced pain hypersensitivity, proinflammatory cytokines and chemokines production, and neuronal hyperexcitability. Together, these findings identified the SOX11/CBLN2/NF-κB axis as a critical mediator of neuropathic pain and a promising target for therapeutic intervention.
Animals
;
Neuralgia/metabolism*
;
Ganglia, Spinal/metabolism*
;
Up-Regulation
;
Mice
;
NF-kappa B/metabolism*
;
SOXC Transcription Factors/genetics*
;
Male
;
Neuroinflammatory Diseases/metabolism*
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics*
;
Hyperalgesia/metabolism*
;
Signal Transduction
;
Spinal Nerves
7.NUMB endocytic adaptor protein (NUMB) mediates the anti-hepatic fibrosis effect of artesunate (ART) by inducing senescence in hepatic stellate cells (HSCs).
Yangling QIU ; Yujia LI ; Mengran LI ; Yingqian WANG ; Min SHEN ; Jiangjuan SHAO ; Feng ZHANG ; Xuefen XU ; Feixia WANG ; Zili ZHANG ; Shizhong ZHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):322-333
Developing and identifying effective medications and targets for treating hepatic fibrosis is an urgent priority. Our previous research demonstrated the efficacy of artesunate (ART) in alleviating liver fibrosis by eliminating activated hepatic stellate cells (HSCs). However, the underlying mechanism remains unclear despite these findings. Notably, endocytic adaptor protein (NUMB) has significant implications for treating hepatic diseases, but current research primarily focuses on liver regeneration and hepatocellular carcinoma. The precise function of NUMB in liver fibrosis, particularly its ability to regulate HSCs, requires further investigation. This study aims to elucidate the role of NUMB in the anti-hepatic fibrosis action of ART in HSCs. We observed that the expression level of NUMB significantly decreased in activated HSCs compared to quiescent HSCs, exhibiting a negative correlation with the progression of liver fibrosis. Additionally, ART induced senescence in activated HSCs through the NUMB/P53 tumor suppressor (P53) axis. We identified NUMB as a crucial regulator of senescence in activated HSCs and as a mediator of ART in determining cell fate. This research examines the specific target of ART in eliminating activated HSCs, providing both theoretical and experimental evidence for the treatment of liver fibrosis.
Hepatic Stellate Cells/cytology*
;
Liver Cirrhosis/genetics*
;
Artesunate/pharmacology*
;
Cellular Senescence/drug effects*
;
Membrane Proteins/genetics*
;
Animals
;
Humans
;
Nerve Tissue Proteins/genetics*
;
Tumor Suppressor Protein p53/genetics*
;
Male
;
Mice
8.Synaptic Vesicle Glycoprotein 2A Slows down Amyloidogenic Processing of Amyloid Precursor Protein via Regulating Its Intracellular Trafficking.
Qian ZHANG ; Xiao Ling WANG ; Yu Li HOU ; Jing Jing ZHANG ; Cong Cong LIU ; Xiao Min ZHANG ; Ya Qi WANG ; Yu Jian FAN ; Jun Ting LIU ; Jing LIU ; Qiao SONG ; Pei Chang WANG
Biomedical and Environmental Sciences 2025;38(5):607-624
OBJECTIVE:
To reveal the effects and potential mechanisms by which synaptic vesicle glycoprotein 2A (SV2A) influences the distribution of amyloid precursor protein (APP) in the trans-Golgi network (TGN), endolysosomal system, and cell membranes and to reveal the effects of SV2A on APP amyloid degradation.
METHODS:
Colocalization analysis of APP with specific tagged proteins in the TGN, ensolysosomal system, and cell membrane was performed to explore the effects of SV2A on the intracellular transport of APP. APP, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expressions, and APP cleavage products levels were investigated to observe the effects of SV2A on APP amyloidogenic processing.
RESULTS:
APP localization was reduced in the TGN, early endosomes, late endosomes, and lysosomes, whereas it was increased in the recycling endosomes and cell membrane of SV2A-overexpressed neurons. Moreover, Arl5b (ADP-ribosylation factor 5b), a protein responsible for transporting APP from the TGN to early endosomes, was upregulated by SV2A. SV2A overexpression also decreased APP transport from the cell membrane to early endosomes by downregulating APP endocytosis. In addition, products of APP amyloid degradation, including sAPPβ, Aβ 1-42, and Aβ 1-40, were decreased in SV2A-overexpressed cells.
CONCLUSION
These results demonstrated that SV2A promotes APP transport from the TGN to early endosomes by upregulating Arl5b and promoting APP transport from early endosomes to recycling endosomes-cell membrane pathway, which slows APP amyloid degradation.
Amyloid beta-Protein Precursor/genetics*
;
Membrane Glycoproteins/genetics*
;
Animals
;
Protein Transport
;
Nerve Tissue Proteins/genetics*
;
Humans
;
Mice
;
Endosomes/metabolism*
;
trans-Golgi Network/metabolism*
9.Screening and identification of key miRNAs in post-transcriptional regulation of CART in the bovine hypothalamus.
Junli CHENG ; Junrong YAN ; Shuning HOU ; Zhiwei ZHU ; Pengfei LI
Chinese Journal of Biotechnology 2024;40(12):4557-4572
This study aimed to explore the roles of microRNAs (miRNAs) in the post-transcriptional regulation of cocaine- and amphetamine-regulated transcript (CART) peptide in the bovine hypothalamus and to screen key regulatory miRNAs. Targetscan was used to predict the potential miRNAs binding to CART 3' untranslated regions (3'UTR). Bioinformatics analysis predicted 7 miRNA binding sites in the bovine CART 3'UTR, which were bta-miR-377, bta-miR-331-3p, bta-miR-491, bta-miR-493, bta-miR-758, bta-miR-877, and bta-miR-381, respectively. Reverse transcription-PCR (RT-PCR) was carried out to determine the endogenous expression of CART and target miRNAs in the bovine hypothalamus. All the 7 target miRNAs and CART were endogenously expressed in the bovine hypothalamus. The dual-luciferase reporter gene assay was employed to detect the targeted binding relationship between CART 3'UTR and target miRNAs obtained from bioinformatics analysis. The dual-luciferase reporter gene assay confirmed that the 3'UTR of CART had a targeted binding relationship with the 7 target miRNAs. Cell experiments were conducted to examine the effects of target miRNAs on the messenger RNA (mRNA) and protein levels of exogenous CART and screen for key regulatory miRNAs. The results of cell experiments showed that the 7 miRNAs downregulated the mRNA level of CART, with bta-miR-491 demonstrating the strongest downregulating effect. Bta-miR-377, bta-miR-331-3p, bta-miR-491, bta-miR-493, and bta-miR-381 downregulated the protein level of CART, with bta-miR-381 exerting the strongest downregulating effect. Animal experiments were conducted to explore the effects of key regulatory miRNAs on the mRNA and protein levels of CART in the hypothalamus and the CART concentration in the serum. The results from animal experiments showed that miR-491 and miR-381 regulated the endogenous expression of CART in the hypothalamus and the concentration in the serum by binding to the CART 3'UTR. These results suggest that miR-491 and miR-381 are the main miRNAs regulating CART expression in the bovine hypothalamus, which can affect serum CART concentration by modulating endogenous CART expression.
Animals
;
MicroRNAs/metabolism*
;
Cattle
;
Hypothalamus/metabolism*
;
3' Untranslated Regions/genetics*
;
Nerve Tissue Proteins/metabolism*
;
Gene Expression Regulation
;
Binding Sites
;
Base Sequence
;
Computational Biology/methods*
;
Cocaine- and Amphetamine-Regulated Transcript Protein

Result Analysis
Print
Save
E-mail