1.Glutamatergic neurons in thalamic paraventricular nucleus may be involved in the regulation of abnormal sleep behavior of Shank3 gene knockout mice.
Chang-Feng CHEN ; Lie-Cheng WANG ; Yong LIU ; Lei CHEN
Acta Physiologica Sinica 2025;77(5):792-800
The purpose of this study was to investigate the anxiety-like behaviors, circadian rhythms and sleep, and to elucidate the possible underlying mechanisms of the abnormal sleep behavior in Shank3 gene knockout (Shank3-KO) mice. The anxiety-like behaviors were detected by elevated plus-maze (EPM) test, open field test (OFT) and tail suspension test (TST). The circadian rhythms were detected by running wheel test. The electroencephalogram (EEG)/electromyogram (EMG) recordings were performed synchronically by polysomnograph. The distribution of SHANK3 in anterior cingulate cortex (ACC), paraventricular thalamus (PVT), nucleus accumbens (NAc), basolateral amygdala (BLA) and hippocampal CA2 region in wild type (WT) mice was detected by immunofluorescence assay. The protein expression of c-Fos in PVT, ACC and NAc was also detected by immunofluorescence assay during light cycle. The colocalization of c-Fos and vesicular glutamate transporter 2 (Vglut2, a marker for glutamatergic neurons) in the PVT was detected by immunofluorescence double labeling experiment. The results of EPM test showed that, compared with the WT mice, the Shank3-KO mice showed less time in open arms and less number of open arm entries. The results of OFT showed that the Shank3-KO mice showed less time in central area and less number of central area entries. The immobility time of Shank3-KO mice was increased in the TST. The results of running wheel rhythm test showed that the phase shift time of Shank3-KO mice in the continuous dark period was increased. The results of EEG/EMG recording showed that, compared with the WT mice, the duration of wakefulness in Shank3-KO mice was increased and the duration of non-rapid eye movement (NREM) sleep was decreased during light phase; The bout number of wakefulness was increased, the bout number of NREM sleep was decreased, NREM-wake transitions were increased, and wake-NREM transitions were decreased during light phase. SHANK3 was expressed in ACC, PVT, NAc and BLA in the WT mice. The expression of c-Fos in the PVT of Shank3-KO mice was up-regulated 2 h after entering the light phase, and majority of c-Fos was co-localized with Vglut2. These results suggest that the anxiety level of Shank3-KO mice is increased, the regulation of the internal rhythms is decreased, and the bout number of wakefulness is increased during light phase. The glutamatergic neurons in PVT may be involved in the regulation of abnormal sleep behavior in Shank3-KO mice during the light phase.
Animals
;
Mice, Knockout
;
Mice
;
Neurons/metabolism*
;
Nerve Tissue Proteins/physiology*
;
Male
;
Midline Thalamic Nuclei/cytology*
;
Circadian Rhythm/physiology*
;
Sleep/physiology*
;
Anxiety/physiopathology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Mice, Inbred C57BL
;
Microfilament Proteins
2.Preliminary study on preparation of decellularized nerve grafts from GGTA1 gene-edited pigs and their immune rejection in xenotransplantation.
Yuli LIU ; Jinjuan ZHAO ; Xiangyu SONG ; Zhibo JIA ; Chaochao LI ; Tieyuan ZHANG ; Xiangling LI ; Shi YAN ; Ruichao HE ; Jiang PENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):224-229
OBJECTIVE:
To prepare decellularized nerve grafts from alpha-1, 3-galactosyltransferase (GGTA1) gene-edited pigs and explore their biocompatibility for xenotransplantation.
METHODS:
The sciatic nerves from wild-type pigs and GGTA1 gene-edited pigs were obtained and underwent decellularization. The alpha-galactosidase (α-gal) content in the sciatic nerves of GGTA1 gene-edited pigs was detected by using IB4 fluorescence staining and ELISA method to verify the knockout status of the GGTA1 gene, and using human sciatic nerve as a control. HE staining and scanning electron microscopy observation were used to observe the structure of the nerve samples. Immunofluorescence staining and DNA content determination were used to evaluate the degree of decellularization of the nerve samples. Fourteen nude mice were taken, and subcutaneous capsules were prepared on both sides of the spine. Decellularized nerve samples of wild-type pigs ( n=7) and GGTA1 gene-edited pigs ( n=7) were randomly implanted in the subcutaneous capsules. Blood was drawn at 1, 3, 5, and 7 days after implantation to detect neutrophil counting.
RESULTS:
IB4 fluorescence staining and ELISA detection showed that GGTA1 gene was successfully knocked out in the nerves of GGTA1 gene-edited pigs. HE staining showed that the structure of the decellularized nerve from GGTA1 gene-edited pigs was well preserved; the nerve basement membrane tube structure was visible under scanning electron microscopy; no cell nuclei was observed, and the extracellular matrix components was retained in the nerve grafts by immunofluorescence staining; and the DNA content was significantly reduced when compared with the normal nerves ( P<0.05). In vivo experiments showed that the number of neutrophils in the two groups were similar at 1, 3, and 7 days after implantation, with no significant difference ( P>0.05); only at 5 days, the number of neutrophils was significantly lower in the GGTA1 gene-edited pigs than in the wild-type pigs ( P<0.05).
CONCLUSION
The decellularized nerve grafts from GGTA1 gene-edited pigs have well-preserved nerve structure, complete decellularization, retain the natural nerve basement membrane tube structure and components, and low immune response after xenotransplantation through in vitro experiments.
Animals
;
Transplantation, Heterologous
;
Galactosyltransferases/genetics*
;
Sciatic Nerve/immunology*
;
Swine
;
Tissue Engineering/methods*
;
Humans
;
Graft Rejection/prevention & control*
;
Gene Editing
;
Mice
;
Mice, Nude
;
Heterografts/immunology*
;
Animals, Genetically Modified
;
Tissue Scaffolds
;
Decellularized Extracellular Matrix
3.Research progress on silk fibroin-nerve guidance conduits for peripheral nerve injury repair.
Fan DONG ; Yining WANG ; Zixiang WU ; Quanchang TAN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):777-782
OBJECTIVE:
To review the research progress on silk fibroin (SF)-nerve guidance conduits (NGCs) for peripheral nerve injury (PNI) repair.
METHODS:
To review the recent literature on PNI and SF-NGCs, expound the concepts and treatment strategies of PNI, and summarize the construction of SF-NGCs and its application in PNI repair.
RESULTS:
Autologous nerve transplantation remains the "gold standard" for treating severe PNI. However, it's clinical applications are constrained by the limitations of limited donors and donor area damage. Natural SF exhibits good biocompatibility, low immunogenicity, and excellent physicochemical properties, making it an ideal candidate for the construction of NGCs. SF-NGCs constructed using different technologies have been found to have better biocompatibility and bioactivity. Their configurations can facilitate nerve regeneration by enhancing regenerative guidance and axonal extension. Besides, the adhesion, proliferation and differentiation of neurons and Schwann cells related to PNI repair can be effectively promote by NGCs. This accelerates the speed of nerve regeneration and improves the efficiency of repair. In addition, SF-NGCs can be used as regenerative scaffolds to provide biological templates for nerve repair.
CONCLUSION
The biodegradable natural SF has been extensively studied and demonstrated promising application prospects in the field of NGCs. It might be an effective and viable alternative to the "gold standard" for PNI treatment.
Fibroins/chemistry*
;
Peripheral Nerve Injuries/therapy*
;
Nerve Regeneration
;
Tissue Scaffolds/chemistry*
;
Humans
;
Guided Tissue Regeneration/methods*
;
Biocompatible Materials
;
Animals
;
Tissue Engineering/methods*
;
Schwann Cells/cytology*
;
Peripheral Nerves
;
Neurons/cytology*
4.Application of index finger proximal dorsal island flap supplied by nutrient vessels of superficial branch of radial nerve for thumb skin and soft tissue defect.
Huanyou YANG ; Huiwen ZHANG ; Wenqian BU ; Wei WANG ; Jian ZHANG ; Bin WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):869-872
OBJECTIVE:
To explore the method and effectiveness of index finger proximal dorsal island flap supplied by the nutrient vessels of superficial branch of radial nerve for treatment of thumb skin and soft tissue defect.
METHODS:
Between August 2019 and December 2024, 12 patients with thumb skin and soft tissue defects caused by trauma accompanied by variation of the first dorsal metacarpal artery were treated. There were 8 males and 4 females, aged 19-55 years, with an average age of 32 years. The wound area ranged from 2.2 cm×2.0 cm to 5.5 cm×3.5 cm. The time from injury to operation ranged from 1.5 to 6.0 hours, with an average of 4.5 hours. After thorough debridement, the wound was repaired with a index finger proximal dorsal island flap supplied by the nutrient vessels of the superficial branch of the radial nerve. The flap area ranged from 2.4 cm×2.2 cm to 6.0 cm×4.0 cm. The donor site was repaired with free skin grafting. Regular follow-up was conducted postoperatively to observe the appearance, texture, sensory recovery of the flap, and the condition of the donor site.
RESULTS:
The operation time ranged from 30 to 72 minutes, with an average of 47 minutes; intraoperative blood loss ranged from 30 to 70 mL, with an average of 46 mL. After operation, partial necrosis occurred at the skin edge of the radial incision on the dorsum of the hand in 1 case, which healed after dressing changes; all other flaps survived uneventfully, with primary wound healing. The skin grafts at the donor sites all survived. All 12 patients were followed up 5-36 months, with an average of 14 months. The appearance and texture of the flaps were good. At last follow-up, the two-point discrimination of the flaps ranged from 4 to 9 mm, with an average of 5.2 mm. According to the functional evaluation criteria for upper limb issued by the Hand Surgery Society of Chinese Medical Association, the results were excellent in 11 cases and good in 1 case. No scar contracture, pain, or joint movement limitation was observed at the donor sites.
CONCLUSION
For patients with skin and soft tissue defects of the thumb accompanied by variation of the first dorsal metacarpal artery, the index finger proximal dorsal island flap supplied by the nutrient vessels of the superficial branch of the radial nerve can be selected. This method has advantages such as shorter operation time, less intraoperative bleeding, and good postoperative appearance and sensation of the flap.
Humans
;
Male
;
Adult
;
Female
;
Thumb/surgery*
;
Soft Tissue Injuries/surgery*
;
Radial Nerve/surgery*
;
Middle Aged
;
Surgical Flaps/innervation*
;
Plastic Surgery Procedures/methods*
;
Skin Transplantation/methods*
;
Young Adult
;
Treatment Outcome
;
Fingers/surgery*
;
Skin/injuries*
5.Research progress in auxiliary components of nerve conduit for treating peripheral nerve injuries.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1061-1067
OBJECTIVE:
To review recent research progress in the use of auxiliary components of nerve conduits for the treatment of peripheral nerve injuries.
METHODS:
An extensive review of recent domestic and international literature was conducted to evaluate the role of auxiliary components in nerve conduits for peripheral nerve repair, with a focus on their effects and underlying mechanisms.
RESULTS:
By incorporating auxiliary components such as bioactive molecules, therapeutic cells, and their derivatives, nerve conduits can create a more biomimetic regenerative microenvironment. This is achieved by providing neurotrophic support, modulating the immune microenvironment, improving blood and oxygen supply, and offering directional guidance for nerve regeneration. Consequently, the nerve conduit is transformed from a simple physical scaffold into an active, bio-functional repair system, which enhances the effectiveness for PNI.
CONCLUSION
While nerve conduits augmented with auxiliary components demonstrate improved effectiveness, further advancements are required in drug delivery systems and the integration of cellular components. Moreover, most current studies are based on animal or in vitro experiments. Randomized controlled clinical trials are necessary to validate their clinical effectiveness.
Peripheral Nerve Injuries/surgery*
;
Nerve Regeneration
;
Humans
;
Tissue Scaffolds
;
Animals
;
Guided Tissue Regeneration/methods*
;
Tissue Engineering/methods*
;
Biocompatible Materials
;
Peripheral Nerves
;
Drug Delivery Systems
6.Knockdown of NPTX1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.
Ting SHUAI ; Yanyan GUO ; Chunping LIN ; Xiaomei HOU ; Chanyuan JIN
Journal of Peking University(Health Sciences) 2025;57(1):7-12
OBJECTIVE:
To initially investigate the function of neuronal pentraxin 1 (NPTX1) gene on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).
METHODS:
hBMSCs were induced to undergo osteogenic differentiation, and then RNA was collected at different time points, namely 0, 3, 7, 10 and 14 d. The mRNA expression levels of key genes related with osteogenic differentiation, including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and NPTX1, were detected on the basis of quantitative real-time polymerase chain reaction (qPCR) technology. In order to establish a stable NPTX1-knockdown hBMSCs cell line, NPTX1 shRNA lentivirus was constructed and used to infect hBMSCs. ALP staining, alizarin red (AR) staining, and qPCR were employed to assess the impact of NPTX1-knockdown on the osteogenic differentiation ability of hBMSCs.
RESULTS:
The results showed that during the osteogenic differentiation of hBMSCs in vitro, the mRNA expression levels of osteogenic genes RUNX2, ALP and OCN significantly increased compared with 0 d, while NPTX1 expression decreased markedly (P < 0.01) as the osteogenic induction period exten-ded. At 72 h post-infection with lentivirus, the result of qPCR indicated that the knockdown efficiency of NPTX1 was over 60%. After knocking down NPTX1 in hBMSCs, RNA was extracted from both the NPTX1-knockdown group (sh NPTX1 group) and the control group (shNC group) cultured in regular proliferation medium. The results of qPCR showed that the expression levels of osteogenic-related genes RUNX2 and osterix (OSX) were significantly higher in the sh NPTX1 group compared with the shNC group (P < 0.01). ALP staining revealed a significantly deeper coloration in the sh NPTX1 group than in the shNC group at the end of 7 d of osteogenic induction. AR staining demonstrated a marked increase in mineralized nodules in the sh NPTX1 group compared with the shNC group at the end of 14 d of osteogenic induction.
CONCLUSION
NPTX1 exerts a modulatory role in the osteogenic differentiation of hBMSCs, and its knockdown has been found to enhance the osteogenic differentiation of hBMSCs. This finding implies that NPTX1 could potentially serve as a therapeutic target for the treatment of osteogenic abnormalities, including osteoporosis.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis/genetics*
;
Cell Differentiation/genetics*
;
Nerve Tissue Proteins/genetics*
;
Cells, Cultured
;
C-Reactive Protein/genetics*
;
RNA, Small Interfering/genetics*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Bone Marrow Cells/cytology*
;
Gene Knockdown Techniques
;
Osteocalcin/metabolism*
;
Alkaline Phosphatase/metabolism*
;
RNA, Messenger/metabolism*
7.Effect of retinoic acid on delayed encephalopathy after acute carbon monoxide poisoning: Role of the lncRNA SNHG15/LINGO-1/BDNF/TrkB axis.
Fangling HUANG ; Su'e WANG ; Zhengrong PENG ; Xu HUANG ; Sufen BAI
Journal of Central South University(Medical Sciences) 2025;50(6):955-969
OBJECTIVES:
The neurotoxicity of carbon monoxide (CO) to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Our previous study found that retinoic acid (RA) can suppress the neurotoxic effects of CO. This study further explores, in vivo and in vitro, the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.
METHODS:
A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO, and a DEACMP animal model was established in adult Kunming mice. Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Annexin V/propidium iodide (PI) double staining. The transcriptional and protein expression of each gene was detected using real-time fluorescence quantitative PCR (RT-qPCR) and Western blotting. Long noncoding RNA (lncRNA) SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes. In DEACMP mice, SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.
RESULTS:
RA at 10 and 20 μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes, downregulation of SNHG15 and LINGO-1, and upregulation of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) (all P<0.05). Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity (all P<0.05). Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels (all P<0.05). Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP (all P<0.05).
CONCLUSIONS
RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes, thereby reducing central nervous system injury and exerting neuroprotective effects. LncRNA SNHG15 and LINGO-1 are key molecules mediating RA-induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway. These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
Animals
;
RNA, Long Noncoding/physiology*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Carbon Monoxide Poisoning/complications*
;
Mice
;
Tretinoin/pharmacology*
;
Nerve Tissue Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Apoptosis/drug effects*
;
Hippocampus/cytology*
;
Receptor, trkB/metabolism*
;
Neurons/drug effects*
;
Male
;
Brain Diseases/etiology*
;
Oligodendroglia/drug effects*
;
Signal Transduction
;
Cell Line
8.High expression of ELFN1 is a prognostic biomarker and promotes proliferation and metastasis of colorectal cancer cells.
Kang WANG ; Haibin LI ; Jing YU ; Yuan MENG ; Hongli ZHANG
Journal of Southern Medical University 2025;45(7):1543-1553
OBJECTIVES:
To explore the correlation of ELFN1 expression level with prognosis of colorectal cancer and its regulatory role in colorectal cancer cell proliferation and metastasis.
METHODS:
We analyzed the expression levels of ELFN1 across 33 cancer types using publicly available databases and identified differential genes related to ELFN1 in colorectal cancer. Gene function annotation and enrichment analysis were used to identify the involved signaling pathways. Logistic analysis, Kaplan-Meier analysis and Cox regression analysis were performed to evaluate the correlation between ELFN1 expression and clinicopathological parameters and survival of colorectal cancer patients. qPCR and Western blotting were used to validate the expression levels of ELFN1 in different colorectal cancer cell lines and tissues, and Transwell and EDU experiments were carried out to assess the effect of ELFN1 knockdown on biological behaviors of SW480 cells.
RESULTS:
ELFN1 was highly expressed in 14 cancers, and its expression was significantly higher in colon cancer tissues than in adjacent tissues. A high expression of ELFN1 mRNA was associated with a poorer overall survival of colorectal cancer patients. Cox regression analysis indicated that ELFN1 expression was an independent prognostic factor for overall survival of the patients. ELFN1 was significantly enriched in tumor metastasis and proliferation and participated in several tumor signaling pathways. The colon cancer cell lines showed significantly higher expression levels of ELFN1 than normal cells, ELFN1 knockdown obviously inhibited proliferation and migration of SW480 cells in vitro.
CONCLUSIONS
ELFN1 is overexpressed in colorectal cancer and is associated with poor clinical prognosis of the patients. A high ELFN1 expression is associated with malignant phenotypes of colorectal cancer and promotes cancer cell proliferation and metastasis, suggesting its potential as a prognostic biomarker for colorectal cancer.
Humans
;
Colorectal Neoplasms/diagnosis*
;
Cell Proliferation
;
Prognosis
;
Cell Line, Tumor
;
Biomarkers, Tumor/metabolism*
;
Neoplasm Metastasis
;
Gene Expression Regulation, Neoplastic
;
Nerve Tissue Proteins/metabolism*
;
Female
;
Male
9.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
10.Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury.
Xin-Liang WANG ; Zong-Yi WANG ; Xing-Han CHEN ; Yuan CAI ; Bing HU
Neuroscience Bulletin 2025;41(4):633-648
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Nerve Regeneration/physiology*
;
Mitochondria/metabolism*
;
Zebrafish Proteins/genetics*
;
Axons/metabolism*
;
Signal Transduction/physiology*
;
Axonal Transport/physiology*
;
Nerve Tissue Proteins/genetics*

Result Analysis
Print
Save
E-mail