1.Activation of renal outer medullary potassium channel in the renal distal convoluted tubule by high potassium diet.
Xue LI ; Peng-Hui LI ; Yu XIAO ; Kun ZHAO ; Hong-Ye ZHAO ; Chang-Zhu LU ; Xiao-Juan QI ; Rui-Min GU
Acta Physiologica Sinica 2023;75(2):188-196
Renal outer medullary potassium (ROMK) channel is an important K+ excretion channel in the body, and K+ secreted by the ROMK channels is most or all source of urinary potassium. Previous studies focused on the ROMK channels of thick ascending limb (TAL) and collecting duct (CD), while there were few studies on the involvement of ROMK channels of the late distal convoluted tubule (DCT2) in K+ excretion. The purpose of the present study was mainly to record the ROMK channels current in renal DCT2 and observe the effect of high potassium diet on the ROMK channels by using single channel and whole-cell patch-clamp techniques. The results showed that a small conductance channel current with a conductance of 39 pS could be recorded in the apical membrane of renal DCT2, and it could be blocked by Tertiapin-Q (TPNQ), a ROMK channel inhibitor. The high potassium diet significantly increased the probability of ROMK channel current occurrence in the apical membrane of renal DCT2, and enhanced the activity of ROMK channel, compared to normal potassium diet (P < 0.01). Western blot results also demonstrated that the high potassium diet significantly up-regulated the protein expression levels of ROMK channels and epithelial sodium channel (ENaC), and down-regulated the protein expression level of Na+-Cl- cotransporter (NCC). Moreover, the high potassium diet significantly increased urinary potassium excretion. These results suggest that the high potassium diet may activate the ROMK channels in the apical membrane of renal DCT2 and increase the urinary potassium excretion by up-regulating the expression of renal ROMK channels.
Potassium Channels, Inwardly Rectifying/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Potassium/metabolism*
;
Epithelial Sodium Channels/metabolism*
;
Diet
2.Regulation of kidney on potassium balance and its clinical significance.
Qiong-Hong XIE ; Chuan-Ming HAO
Acta Physiologica Sinica 2023;75(2):216-230
Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.
Humans
;
Bartter Syndrome/metabolism*
;
Pseudohypoaldosteronism/metabolism*
;
Potassium/metabolism*
;
Aldosterone/metabolism*
;
Hypokalemia/metabolism*
;
Gitelman Syndrome/metabolism*
;
Hyperkalemia/metabolism*
;
Clinical Relevance
;
Epithelial Sodium Channels/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Sodium/metabolism*
;
Hypertension
;
Alkalosis/metabolism*
;
Water/metabolism*
;
Kidney/metabolism*
3.Effects and mechanisms of total flavones of Abelmoschus manihot in improving insulin resistance and podocyte epithelial-mesenchymal transition in diabetic kidney disease based on IRS1/PI3K/Akt pathway.
Yu WANG ; Dong-Wei CAO ; Yi-Gang WAN ; Geng-Lin MU ; Wei WU ; Qi-Jun FANG ; Ya-Jing LI ; Si-Yu CHA ; Yue TU ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2023;48(10):2646-2656
This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.
Rats
;
Animals
;
Diabetic Nephropathies/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Abelmoschus/chemistry*
;
Podocytes
;
Rats, Sprague-Dawley
;
Epithelial-Mesenchymal Transition
;
Flavones/pharmacology*
;
Insulin Resistance
;
Reactive Oxygen Species
;
Diabetes Mellitus
4.Role of podocyte injury signaling pathway in steroid-resistant nephrotic syndrome and research progress in traditional Chinese medicine intervention.
Wen-Xia YU ; Wen YAN ; En-Lai DAI ; Wen-Xuan TIAN ; Wen-Jing DANG
China Journal of Chinese Materia Medica 2023;48(12):3246-3254
As one of the main diseases leading to end-stage renal disease, steroid-resistant nephrotic syndrome(SRNS) can cause serious complications such as infection. Without effective control, this disease can further lead to the malignant development of the renal function, bringing serious social and economic burdens. As previously reported, the formation of SRNS is mostly related to the podocyte injury in the body, i.e., the injury of glomerular visceral epithelial cells. Phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, nuclear transcription factor-κB(NF-κB) signaling pathway, mammalian target of rapamycin(mTOR)/adenosine monophosphate(AMP)-activated protein kinase(AMPK), transforming growth factor(TGF)-β1/Smads, and other signaling pathways are classical signaling pathways related to podocyte injury. By regulating the expression of signaling pathways, podocyte injury can be intervened to improve the adhesion between podocyte foot processes and glomerular basement membrane and promote the function of podocytes, thereby alleviating the clinical symptoms of SRNS. Through the literature review, traditional Chinese medicine(TCM) has unique advantages and an important role in intervening in podocyte injury. In the intervention in podocyte injury, TCM, by virtue of multi-target and multi-pathway role, can regulate and intervene in podocyte injury in many ways, alleviate the clinical symptoms of SRNS, and interfere with the progress of SRNS, reflecting the unique advantages of TCM. On the other hand, TCM can directly or indirectly inhibit podocyte injury by regulating the above signaling pathways, which can not only promote the effect of hormones and immunosuppressants and shorten the course of treatment, but also reduce the toxic and side effects caused by various hormones and immunosuppressants to exert the advantages of small side effects and low price of TCM. This article reviewed TCM in the treatment of SRNS by interfering with podocyte injury-related signaling pathways and is expected to provide a reference for the in-depth study of TCM in the treatment of SRNS, as well as a theoretical basis and a new direction for the clinical application of TCM to shorten the course of treatment of SRNS and delay the progression to end-stage renal disease.
Humans
;
Podocytes
;
Nephrotic Syndrome/genetics*
;
Medicine, Chinese Traditional
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction
;
NF-kappa B
;
AMP-Activated Protein Kinases
;
Hormones
5.Organizing Pneumonia in A Patient Double-Positive for ANCA and Anti-GBM Antibodies: A Case Report.
Fang-Yuan WANG ; Xiang-Ning YUAN ; Dan-Ni SUN ; Gong XIAO ; Cheng-Huan HU ; Zhong-Hua LIAO ; Jian-Ping NING ; Hui XU ; Jun-Tao FENG ; Hong-Ling YIN ; Xiao-Zhao LI
Chinese Medical Sciences Journal 2023;38(1):66-69
Both anti-glomerular basement membrane (GBM) disease and the anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) are common causes of pulmonary-renal syndrome. Organizing pneumonia (OP), a special pattern of interstitial lung disease, is extremely rare either in AAV or anti-GBM disease. We report an old woman presented with OP on a background of co-presentation with both ANCA and anti-GBM antibodies.
Female
;
Humans
;
Antibodies, Antineutrophil Cytoplasmic
;
Organizing Pneumonia
;
Autoantibodies
;
Glomerulonephritis
;
Anti-Glomerular Basement Membrane Disease
;
Pneumonia
;
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications*
6.Inhibitory Effect of Resveratrol on LPS-induced Glomerular Mesangial Cells Proliferation and TGF-β1 Expression via Sphingosine Kinase 1 Pathway.
Fu-Zhen FENG ; Wen-Yan GONG ; Si-Yun LI ; Yan-Hui DENG
Chinese journal of integrative medicine 2023;29(6):500-507
OBJECTIVE:
To elucidate the renoprotective effect of resveratrol (RSV) on sphingosine kinase 1 (SphK1) signaling pathway and expression of its downstream molecules including activator protein 1 (AP-1) and transformation growth factor-β1 (TGF-β1) in lipopolysaccharide (LPS)-induced glomerular mesangial cells (GMCs).
METHODS:
The rat GMCs line (HBZY-1) were cultured and randomly divided into 5 groups, including control, LPS (100 ng/mL), and 5, 10, 20 µmol/L RSV-treated groups. In addition, SphK1 inhibitor (SK-II) was used as positive control. GMCs were pretreated with RSV for 2 h and treated with LPS for another 24 h. GMCs proliferation was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The proteins expression of SphK1, p-c-Jun and TGF-β1 in GMCs were detected by Western blot, and DNA-binding activity of AP-1 was performed by electrophoretic mobility shift assay (EMSA). The binding activity between RSV and SphK1 protein was detected by AutoDock Vina and visualized by Discovery Studio 2016.
RESULTS:
LPS could obviously stimulate GMCs proliferation, elevate SphK1, p-c-Jun and TGF-β1 expression levels and increase the DNA-binding activity of AP-1 (P<0.05 or P<0.01), whereas these effects were significantly blocked by RSV pretreatment. It was also suggested that the effect of RSV was similar to SK-II (P>0.05). Moreover, RSV exhibited good binding affinity towards SphK1, with docking scores of -8.1 kcal/moL and formed hydrogen bonds with ASP-178 and LEU-268 in SphK1.
CONCLUSION
RSV inhibited LPS-induced GMCs proliferation and TGF-β1 expression, which may be independent of its hypoglycemic effect on preventing the development of mesangial cell fibrosis and closely related to the direct inhibition of SphK1 pathway.
Animals
;
Rats
;
Lipopolysaccharides/pharmacology*
;
Mesangial Cells
;
Resveratrol/pharmacology*
;
Transcription Factor AP-1
;
Transforming Growth Factor beta1
;
Intercellular Signaling Peptides and Proteins
;
Cell Proliferation
;
DNA
;
Cells, Cultured
7.A region-level contrastive learning-based deep model for glomerular ultrastructure segmentation on electron microscope images.
Guoyu LIN ; Zhentai ZHANG ; Yanmeng LU ; Jian GENG ; Zhitao ZHOU ; Lijun LU ; Lei CAO
Journal of Southern Medical University 2023;43(5):815-824
OBJECTIVE:
We propose a novel region- level self-supervised contrastive learning method USRegCon (ultrastructural region contrast) based on the semantic similarity of ultrastructures to improve the performance of the model for glomerular ultrastructure segmentation on electron microscope images.
METHODS:
USRegCon used a large amount of unlabeled data for pre- training of the model in 3 steps: (1) The model encoded and decoded the ultrastructural information in the image and adaptively divided the image into multiple regions based on the semantic similarity of the ultrastructures; (2) Based on the divided regions, the first-order grayscale region representations and deep semantic region representations of each region were extracted by region pooling operation; (3) For the first-order grayscale region representations, a grayscale loss function was proposed to minimize the grayscale difference within regions and maximize the difference between regions. For deep semantic region representations, a semantic loss function was introduced to maximize the similarity of positive region pairs and the difference of negative region pairs in the representation space. These two loss functions were jointly used for pre-training of the model.
RESULTS:
In the segmentation task for 3 ultrastructures of the glomerular filtration barrier based on the private dataset GlomEM, USRegCon achieved promising segmentation results for basement membrane, endothelial cells, and podocytes, with Dice coefficients of (85.69 ± 0.13)%, (74.59 ± 0.13)%, and (78.57 ± 0.16)%, respectively, demonstrating a good performance of the model superior to many existing image-level, pixel-level, and region-level self-supervised contrastive learning methods and close to the fully- supervised pre-training method based on the large- scale labeled dataset ImageNet.
CONCLUSION
USRegCon facilitates the model to learn beneficial region representations from large amounts of unlabeled data to overcome the scarcity of labeled data and improves the deep model performance for glomerular ultrastructure recognition and boundary segmentation.
Humans
;
Electrons
;
Endothelial Cells
;
Learning
;
Podocytes
;
Kidney Diseases
8.Hepatitis B virus X protein promotes podocyte pyroptosis in hepatitis B virus-associated glomerulonephritis by down-regulating microRNA -223 targeting NLRP3 inflammasome.
Ya Ni YU ; Yue Qi CHEN ; Bao Shuang LI ; Xiao Qian YANG ; Mo Xuan FENG ; Wei JIANG
Chinese Journal of Hepatology 2023;39(1):20-31
Objective: To investigate the potential function and related mechanism of microRNA-223 (miRNA-223) in the podocyte pyroptosis of hepatitis B virus (HBV)-associated glomerulonephritis induced by HBV X protein (HBx). Methods: HBx-overexpressing lentivirus was transfected into human renal podocytes to mimic the pathogenesis of HBV-GN. Real-time fluorescence quantitative PCR and Western blotting experiments were used to detect the mRNA and protein expression of pyroptosis-related proteins [nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1], and inflammatory factors (interleukin-1β and interleukin-18), respectively.TUNEL staining and flow cytometry were used to detect the number of pyroptosis cells. Immunofluorescence staining was used to detect the expression of podocytes biomarkers desmin and nephrin; Hoechst 33342 staining was used to observe the morphological and quantitative changes of podocyte nuclei. Enzyme-linked immunosorbent assay was used to measure caspase-1 activity. The dual luciferase reporter gene assay was used to verify the downstream target of miRNA-223. Podocytes were divided into the following nine groups: control group (no special treatment), empty plasmid group (transfected with empty plasmid), HBx overexpression group (transfected with HBx overexpression lentivirus), HBx overexpression+miRNA-223 mimic group (transfected with HBx overexpression lentivirus and miRNA-223 mimic), HBx overexpression+miRNA-223 inhibitor group (transfected with HBx overexpression lentivirus and miRNA-223 inhibitor), HBx overexpression+miRNA-223 mimic+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 mimic+ NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 siRNA), HBx overexpression+miRNA-223 inhibitor+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 inhibitor+NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 siRNA). Results: miRNA-223 was down-regulated in HBx overexpression group compared with the control group (P < 0.05). TUNEL and immunofluorescence staining showed that NLRP3 knockdown attenuated podocyte injury and pyroptosis induced by HBx overexpression (P < 0.05). Dual luciferase reporter gene assay demonstrated that NLRP3 was one of the downstream targets of miRNA-223. Rescue experiments revealed that NLRP3 overexpression weakened the protective effect of miRNA-223 in podocyte injury (P < 0.05). The addition of miRNA-223 mimic and NLRP3 siRNA decreased the expression of NLRP3 inflammasome and cytokines, and reduced the number of pyroptosis cells induced by HBx overexpression (all P < 0.05); The addition of miRNA-223 inhibitor and NLRP3 overexpression plasmid significantly increased the expression of NLRP3 inflammasome and cytokines, caspase-1 activity, and the number of pyroptosis cells (all P < 0.05). Conclusion: HBx may promote podocyte pyroptosis of HBV-GN via downregulating miRNA-223 targeting NLRP3 inflammasome, suggesting that miRNA-223 is expected to be a potential target for the treatment of HBV-GN.
Humans
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Podocytes/metabolism*
;
Hepatitis B virus/genetics*
;
Caspase 1/metabolism*
;
Cytokines/metabolism*
;
Carrier Proteins/metabolism*
;
MicroRNAs/genetics*
;
Glomerulonephritis/metabolism*
;
RNA, Small Interfering
9.Effects and mechanisms of total flavones of Abelmoschus manihot in inhibiting podocyte necroptosis and renal fibrosis in diabetic kidney disease.
Jia-Xin CHEN ; Qi-Jun FANG ; Yi-Gang WAN ; Ying-Lu LIU ; Yu WANG ; Wei WU ; Yue TU ; Mei-Zi WANG ; Dian-Guang WANG ; Hai-Tao GE
China Journal of Chinese Materia Medica 2023;48(15):4137-4146
Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-β1(TGF-β1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.
Humans
;
Rats
;
Animals
;
Diabetic Nephropathies/drug therapy*
;
Abelmoschus
;
Flavones/pharmacology*
;
Podocytes
;
Tumor Necrosis Factor-alpha/metabolism*
;
Necroptosis
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Fibrosis
;
Threonine/pharmacology*
;
Collagen/metabolism*
;
Serine/pharmacology*
;
Diabetes Mellitus/drug therapy*
10.Clinical and genetic analysis of a child with X-linked dominant Alport syndrome.
Tian CHANG ; Zhi HAN ; Xiao LIU ; Panpan WANG
Chinese Journal of Medical Genetics 2023;40(10):1270-1274
OBJECTIVE:
To investigate the clinical features and genetic variant of a child with X-linked dominant Alport syndrome (XLAS).
METHODS:
A child who had presented at the First Affiliated Hospital of Zhengzhou University in May 2019 was selected as the study subject. Clinical data of the child was collected. Next generation sequencing (NGS) was carried out for the child. Candidate variants were validated by Sanger sequencing of his family members.
RESULTS:
The child, a 12-year-old boy, had mainly manifested gross hematuria, proteinuria, nephrotic syndrome, and progressive renal impairment in conjunct with hearing loss. Kidney biopsy has revealed uneven glomerular basement membrane thickness. DNA sequencing revealed that the child and his mother have both carried a heterozygous c.2632G>A (p.G878R) variant of the COL4A5 gene, for which his father and brother were of the wild type. This variant was unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was classified as pathogenic (PS1+PM1+PM2_Supporting+PP3).
CONCLUSION
The maternally derived hemizygous c.2632G>A (p.G878R) variant of the COL4A5 gene probably underlay the XLAS in this child. Above finding has enriched the mutational spectrum of the COL4A5 gene.
Male
;
Female
;
Humans
;
Child
;
Nephritis, Hereditary/genetics*
;
Deafness
;
Kidney Glomerulus
;
Genomics
;
Mothers

Result Analysis
Print
Save
E-mail