1.Research progress on the functional polarization mechanism of myeloid-derived cells in the tumor microenvironment and their targeted therapy potential.
Chuangchuang LI ; Jingchang LI ; Xiaorui LI ; Yu SHA ; Weihong REN
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):844-850
Myeloid-derived cells (MDCs) are crucial in immune response and tissue homeostasis. They have high functional plasticity and can be polarized according to microenvironment signals. These cells, including macrophages, neutrophils, and dendritic cells (DCs), exhibit different functional polarization states in different pathological environments and are involved in the occurrence and development of diseases such as inflammation and tumors. Studies have shown that metabolic reprogramming plays a key role in the functional polarization of MDCs, affecting the cellular energy supply and regulating immune function. This paper reviews classification, function and polarization mechanism of MDCs and discusses metabolic reprogramming. In addition, the therapeutic strategies targeting MDC are summarized, which is expected to provide new targets for tumor immunotherapy.
Humans
;
Tumor Microenvironment/immunology*
;
Myeloid Cells/metabolism*
;
Neoplasms/pathology*
;
Animals
;
Immunotherapy/methods*
;
Dendritic Cells/immunology*
;
Macrophages/immunology*
2.Recent advances in antibody-drug conjugates for metastatic castration-resistant prostate cancer.
Jiacheng XU ; Yutao MA ; Pengcheng HU ; Jiatao YAO ; Haichao CHEN ; Qi MA
Journal of Zhejiang University. Medical sciences 2025;54(5):685-693
Patients with metastatic castration-resistant prostate cancer (mCRPC) face poor prognoses due to tumor heterogeneity and drug resistance. Antibody-drug conjugates (ADCs) have been under development for over two decades for mCRPC treatment. Several clinical trials have demonstrated promising antitumor activity and acceptable safety profiles for ADCs in this setting. Among prostate-specific membrane antigen (PSMA)-targeted ADCs, ARX517 demonstrates superior safety and more significant prostate-specific antigen (PSA) reductions compared to earlier agents such as MLN2704, PSMA-ADC, and MEDI3726. ADCs targeting B7-H3, such as MGC018 and DB-1311, have also shown antitumor activity. ADCs targeting other antigens, including six-transmembrane epithelial antigen of the prostate (STEAP)1 (DSTP3086S), trophoblast cell surface antigen (TROP)2 (sacituzumab govitecan), and solute carrier (SLC) 44A4 (ASG-5ME), have shown preliminary antitumor activity in early trials but face challenges with insufficient efficacy or toxicity. Tisotumab vedotin (targeting tissue factor) has shown no significant therapeutic response in mCRPC. Meanwhile, disitamab vedotin (HER2-targeted), ABBV-969 and DXC008 (both dual PSMA/STEAP1-targeted) are currently under evaluation. Notably, an international multicenter phase Ⅲ clinical trial (NCT06925737) for mCRPC has been initiated in May 2025 for evaluating B7-H3-targeted ADC ifinatamab deruxtecan. This review summarizes recent advances in ADCs targeting key antigens in mCRPC (including PSMA, B7-H3, STEAP1, TROP2, SLC44A4, and others) and explores combination strategies, offering insights to inform the clinical management of mCRPC.
Humans
;
Prostatic Neoplasms, Castration-Resistant/pathology*
;
Male
;
Immunoconjugates/therapeutic use*
;
Glutamate Carboxypeptidase II/immunology*
;
Antibodies, Monoclonal, Humanized/therapeutic use*
;
B7 Antigens/immunology*
;
Neoplasm Metastasis
;
Prostate-Specific Antigen
;
Antigens, Neoplasm/immunology*
;
Antigens, Surface
;
Camptothecin/analogs & derivatives*
;
Oxidoreductases
3.Galectin-3 in the Lung Cancer Microenvironment: Immunomodulation and Therapeutic Breakthroughs.
Hongbao ZHU ; Jiong DENG ; Tong WANG
Chinese Journal of Lung Cancer 2025;28(7):506-512
Lung cancer remains one of the most prevalent and deadly malignancies worldwide, with persistently low five-year survival rates. This poor prognosis is primarily attributed to challenges such as difficulties in early diagnosis, high tumor heterogeneity, and strong therapeutic resistance. Although recent advances in targeted therapies and immune checkpoint inhibitors have significantly improved the prognosis of some patients, the majority still encounter primary or secondary resistance. Galectin-3, a multifunctional glycan-binding protein, is constitutively expressed in pulmonary tissues. Its expression encompasses bronchial and alveolar epithelial cells, the pulmonary vasculature, and resident immune cells. Galectin-3 plays a central role in lung cancer progression by regulating tumor cell proliferation, immune evasion, and angiogenesis. The complex immunosuppressive mechanisms within the tumor microenvironment not only facilitate tumor growth and metastasis but also partially limit the efficacy of cancer immunotherapies. Overcoming these barriers requires the exploration of novel regulatory targets to break through therapeutic bottlenecks. This review systematically elucidates the mechanisms by which galectin-3 interacts with immune cells (e.g., T cells, macrophages) in the tumor microenvironment and evaluates its potential as a therapeutic target, including inhibitor development and combination immunotherapy strategies. The findings aim to provide a theoretical foundation for advancing galectin-3 as a novel therapeutic target in lung cancer and offer new perspectives for overcoming current immunotherapy resistance.
.
Humans
;
Lung Neoplasms/pathology*
;
Tumor Microenvironment/immunology*
;
Galectin 3/genetics*
;
Animals
;
Immunomodulation
;
Immunotherapy
4.Correlations of immune cell infiltration characteristics with clinicopathological parameters in patients with clear cell renal cell carcinoma.
Huaxuan ZHAO ; Guichao ZHANG ; Jiarong LIU ; Futian MO ; Taoen LI ; Chengyong LEI ; Shidong LÜ
Journal of Southern Medical University 2025;45(6):1280-1288
OBJECTIVES:
To investigate the characteristics of immune cell infiltration in tumor samples from Chinese patients with clear cell renal cell carcinoma (ccRCC) and the correlation of immune cell infiltration with tumor stage and response to immunotherapy.
METHODS:
Tumor samples and clinicopathological data were collected from 154 ccRCC patients treated in Nanfang Hospital, Southern Medical University from October, 2020 to October, 2023. The immune cell types infiltrating the tumor tissues were identified using immunohistochemistry and immunofluorescence staining, and their correlations with the patients' clinicopathological characteristics were analyzed. Patient-derived tumor tissue fragment models (PDTF) models, constructed using tumor tissues from 22 patients, were treated with PD-1 monoclonal antibody, and T cell activation was detected using flow cytometry to assess the patients' responses to immunotherapy.
RESULTS:
In Chinese ccRCC patients included in this study, CD8+ T cells, CD4+ T cells, and CD3+ T cells were the most abundant in the tumor tissues. Higher infiltration levels of CD3+ T cells (P=0.004), PD-1+ T cells (P=0.020), CD68+ T cells (P=0.049), CD79+ T cells (P=0.049), and Tryptase+ cells (P=0.049) were all positively correlated with a larger tumor size (≥5 cm). A higher infiltration level of CD4+ T cells was associated with a lower tumor stage. Patients with higher International Society of Urological Pathology (ISUP) grades had higher infiltration levels of CD3+ T cells (P=0.023), CD8+ T cells (P=0.045), PD-1+ T cells (P=0.014), CD20+ B cells (P=0.020) and CD79+ B cells (P=0.049), and lower levels of Tryptase+ cells (P=0.001). Patients with abundant infiltrating immune cells tended to have better responses to immunotherapy.
CONCLUSIONS
The infiltrating immune cells are heterogeneous in Chinese ccRCC patients, and immune cell infiltration characteristics are closely correlated with clinicopathological parameters of the patients.
Humans
;
Carcinoma, Renal Cell/pathology*
;
Kidney Neoplasms/pathology*
;
Immunotherapy
;
Male
;
Lymphocytes, Tumor-Infiltrating/immunology*
;
Female
;
Middle Aged
;
CD8-Positive T-Lymphocytes/immunology*
;
Aged
;
T-Lymphocytes/immunology*
;
Programmed Cell Death 1 Receptor/immunology*
;
Adult
;
CD4-Positive T-Lymphocytes/immunology*
;
Neoplasm Staging
5.Endoplasmic reticulum membrane remodeling by targeting reticulon-4 induces pyroptosis to facilitate antitumor immune.
Mei-Mei ZHAO ; Ting-Ting REN ; Jing-Kang WANG ; Lu YAO ; Ting-Ting LIU ; Ji-Chao ZHANG ; Yang LIU ; Lan YUAN ; Dan LIU ; Jiu-Hui XU ; Peng-Fei TU ; Xiao-Dong TANG ; Ke-Wu ZENG
Protein & Cell 2025;16(2):121-135
Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to pyruvate kinase M2 (PKM2)-dependent conventional caspase-3/gasdermin E (GSDME) cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-programmed death-1 (anti-PD-1). In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.
Pyroptosis/immunology*
;
Humans
;
Endoplasmic Reticulum/immunology*
;
Animals
;
Nogo Proteins/antagonists & inhibitors*
;
Mice
;
Cell Line, Tumor
;
Xanthones/pharmacology*
;
Neoplasms/pathology*
;
Mice, Nude
6.The role of tumor-associated macrophages in the development and progression of cervical cancer.
Siyi MAO ; Zheng FANG ; Yiming XU ; Kun YANG ; Shuya YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(11):1029-1034
Cervical cancer (CC) has been a hot topic in the field of gynecological cancer due to its high morbidity and mortality. As one of the major components, tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), differentiating into M1 and M2 phenotypes under the influence of various cytokines, with a predominance of the M2 phenotype among TAMs. Notably, the functions of these two phenotypes are almost opposite. M1 macrophages promote inflammation and inhibit tumor development, while M2 macrophages tend to suppress the immune response and promote tumor growth. Additionally, TAMs can influence tumor invasion, metastasis and immune regulation through interacting with various lymphocytes and cytokines. Numerous studies have demonstrated that TAMs can be used as prognostic markers for CC, and as therapeutic targets in clinical setting. A deeper comprehension of interactions between TAMs and CC, achieved by integrating findings and conclusions from various studies, is conducive to the discovery of new directions for research and new perspectives for clinical treatment.
Humans
;
Uterine Cervical Neoplasms/pathology*
;
Female
;
Tumor-Associated Macrophages/metabolism*
;
Tumor Microenvironment/immunology*
;
Disease Progression
;
Cytokines/immunology*
;
Animals
;
Macrophages/immunology*
7.Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma.
Yuqian MO ; Zhilin ZOU ; Erbao CHEN
Journal of Zhejiang University. Medical sciences 2024;53(6):715-725
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Ferroptosis
;
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/metabolism*
;
Tumor Microenvironment/immunology*
;
Lipid Peroxidation
;
Immunotherapy
;
Oxidative Stress
;
Iron/metabolism*
;
Lipid Metabolism
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Macrophages/immunology*
;
Amino Acid Transport System y+
8.How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?
Ruyi XU ; Yi LI ; Yang LIU ; Jianwei QU ; Wen CAO ; Enfan ZHANG ; Jingsong HE ; Zhen CAI
Protein & Cell 2020;11(12):881-893
Cytokines are secreted by various cell types and act as critical mediators in many physiological processes, including immune response and tumor progression. Cytokines production is precisely and timely regulated by multiple mechanisms at different levels, ranging from transcriptional to post-transcriptional and posttranslational processes. Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), a potent immunosuppressive protein, was first described as a transcription factor in monocytes treated with monocyte chemoattractant protein-1 (MCP-1) and subsequently found to possess intrinsic RNase and deubiquitinase activities. MCPIP1 tightly regulates cytokines expression via various functions. Furthermore, cytokines such as interleukin 1 beta (IL-1B) and MCP-1 and inflammatory cytokines inducer lipopolysaccharide (LPS) strongly induce MCPIP1 expression. Mutually regulated MCPIP1 and cytokines form a complicated network in the tumor environment. In this review, we summarize how MCPIP1 and cytokines reciprocally interact and elucidate the effect of the network formed by these components in cancer-related immunity with aim of exploring potential clinical benefits of their mutual regulation.
Chemokine CCL2/immunology*
;
Humans
;
Interleukin-1beta/immunology*
;
Neoplasm Proteins/immunology*
;
Neoplasms/pathology*
;
Ribonucleases/immunology*
;
Transcription Factors/immunology*
9.Anti-tumor and immune-modulating effect of decoction in mice bearing hepatoma H22 tumor.
Limei CHEN ; Tong JIN ; Chuntao NING ; Suli WANG ; Lijie WANG ; Jingming LIN
Journal of Southern Medical University 2019;39(2):241-248
OBJECTIVE:
To investigate the antitumor activity of decoction and study its liver and kidney toxicity and its effect on the immune system in a tumor-bearing mouse model.
METHODS:
Hepatoma H22 tumor-bearing mouse models were randomized into model group, cyclophosphamide (CTX) group, and low-, moderate-, and high-dose decoction groups (JW-L, JW-M, and JW-H groups, respectively). The antitumor activity of decoction was assessed by calculating the tumor inhibition rate and pathological observation of the tumor tissues. Immunohistochemistry was used to detect the expressions of Bax, Bcl-2, Bax/Bcl-2 and caspase-3 in the tumors. The liver and kidney toxicity of decoction was analyzed by evaluating the biochemical indicators of liver and kidney functions. The immune function of the tumor-bearing mice were assessed by calculating the immune organ index, testing peripheral blood routines, and detection of serum IL-2 and TNF-α levels using enzyme-linked immunosorbent assay.
RESULTS:
Compared with that in the model group, the tumor mass in CTX, JW-M and JW-H groups were all significantly reduced ( < 0.05) with cell rupture and necrosis in the tumors. Immunohistochemistry revealed obviously up-regulated expressions of Bax and caspase-3 and down- regulated expression of Bcl-2 protein with an increased Bax/Bcl-2 ratio in CTX, JW-M and JW-H groups. Treatment with decoction significantly reduced Cr, BUN, AST and ALT levels, improved the immune organ index, increased peripheral blood leukocytes, erythrocytes and hemoglobin levels, and up-regulated the levels of TNF-α and IL-2 in the tumor-bearing mice. These changes were especially significant in JW-H group when compared with the parameters in the model group ( < 0.01).
CONCLUSIONS
decoction has a strong anti-tumor activity and can improve the liver and kidney functions of tumor-bearing mice. Its anti-tumor effect may be attributed to the up-regulation of Bax, caspase-3, TNF-α and IL-2 levels and the down-regulation of Bcl-2 expression as well as the enhancement of the non-specific immune function.
Animals
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Carcinoma, Hepatocellular
;
drug therapy
;
immunology
;
metabolism
;
pathology
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
drug effects
;
Liver
;
drug effects
;
pathology
;
Liver Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
pathology
;
Mice
;
Necrosis
;
Neoplasm Proteins
;
metabolism
;
Random Allocation
;
Up-Regulation
10.Potent and conditional redirected T cell killing of tumor cells using Half DVD-Ig.
Philip D BARDWELL ; Matthew M STARON ; Junjian LIU ; Qingfeng TAO ; Susanne SCESNEY ; Gail BUKOFZER ; Luis E RODRIGUEZ ; Chee-Ho CHOI ; Jennifer WANG ; Qing CHANG ; Feng DONG ; Cherrie DONAWHO ; Jieyi WANG ; Christine M GRINNELL ; Edit TARCSA ; Charles HUTCHINS ; Tariq GHAYUR ; Jijie GU
Protein & Cell 2018;9(1):121-129
Novel biologics that redirect cytotoxic T lymphocytes (CTLs) to kill tumor cells bearing a tumor associated antigen hold great promise in the clinic. However, the ability to safely and potently target CD3 on CTL toward tumor associated antigens (TAA) expressed on tumor cells remains a challenge of both technology and biology. Herein we describe the use of a Half DVD-Ig format that can redirect CTL to kill tumor cells. Notably, Half DVD-Ig molecules that are monovalent for each specificity demonstrated reduced non-specific CTL activation and conditional CTL activation upon binding to TAA compared to intact tetravalent DVD-Ig molecules that are bivalent for each specificity, while maintaining good drug like properties and appropriate PK properties.
Animals
;
Antibodies, Bispecific
;
immunology
;
Antibodies, Monoclonal
;
immunology
;
pharmacokinetics
;
CD3 Complex
;
metabolism
;
Cell Line, Tumor
;
Cytotoxicity, Immunologic
;
ErbB Receptors
;
metabolism
;
Female
;
Humans
;
Lymphocyte Activation
;
immunology
;
Mice, SCID
;
Neoplasms
;
immunology
;
pathology
;
Rats, Sprague-Dawley
;
T-Lymphocytes, Cytotoxic
;
immunology

Result Analysis
Print
Save
E-mail