1.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
2.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
3.Novel paradigms in KRAS targeting: Unveiling strategies to combat drug resistance.
Xiyuan LUO ; Feihan ZHOU ; Yuemeng TANG ; Xiaohong LIU ; Ruilin XIAO ; Minzhi GU ; Jialu BAI ; Decheng JIANG ; Gang YANG ; Lei YOU ; Yupei ZHAO
Chinese Medical Journal 2025;138(18):2243-2267
The Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutation is one of the most prevalent activating alterations in cancer. It indicates a poor overall prognosis due to its highly invasive nature. Although several KRAS inhibitors have been developed in recent years, a significant clinical challenge has emerged as a substantial proportion of patients eventually develop resistance to these therapies. Therefore, identifying determinants of drug resistance is critical for guiding treatment strategies. This review provides a comprehensive overview of the mutation landscape and molecular mechanisms of KRAS activity in various cancers. Meanwhile, it summaries the progress and prospects of small molecule KRAS inhibitors undergoing clinical trials. Furthemore, this review explores potential strategies to overcome drug resistance, with the ultimate goal of steering toward patient-centric precision oncology in the foreseeable future.
Humans
;
Drug Resistance, Neoplasm/drug effects*
;
Proto-Oncogene Proteins p21(ras)/metabolism*
;
Mutation/genetics*
;
Neoplasms/genetics*
;
Antineoplastic Agents/therapeutic use*
4.Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway.
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):9-16
Objective To study the impacts of curcumin on the proliferation, migration and cisplatin (DDP) resistance of bladder cancer cells by regulating the liver kinase B1-AMP activated protein kinase-microtubule-associated protein 1 light chain 3 (LKB1-AMPK-LC3) signaling pathway. Methods Human bladder cancer cell line T24 was cultured in vitro, and its DDP resistant T24/DDP cells were induced by cisplatin (DDP). After treating T24 and T24/DDP cells with different concentrations of curcumin, the optimal concentration of curcumin was screened by MTT assay. T24 cells were randomly grouped into control group, curcumin group, metformin group, and combination group of curcumin and metformin. After treatment with curcumin and LKB1-AMPK activator metformin, the proliferation, autophagy, migration, and apoptosis of T24 cells in each group were detected by MTT assay, monodansylcadavrine (MDC) fluorescence staining, cell scratch assay, and flow cytometry, respectively. Western blot was used to detect the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24 cells of each group. T24/DDP cells were randomly assigned into control group, curcumin group, metformin group, and combination group of curcumin and metformin. Cells were treated with curcumin and metformin according to grouping and treated with different concentrations of DDP simultaneously. Then, the effect of curcumin on the DDP resistance coefficient of T24/DDP cells was detected by MTT assay. T24/DDP cells were randomly grouped into control group, DDP group, combination groups of DDP and curcumin, DDP and metformin, DDP, curcumin and metformi. After treatment with DDP, curcumin, and metformin, the proliferation, autophagy, migration, apoptosis, drug resistance, and the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24/DDP cells of each group were detected with the same methods. Results Compared with the control group, the activity of T24 cells, relative number of autophagosomes, migration rate, Phosphorylated-LKB1 (p-LKB1)/LKB1, Phosphorylated-AMPK (p-AMPK)/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the curcumin group were lower, and the apoptosis rate of T24 cells was higher; the changes in various indicators in the metformin group were opposite to those in the curcumin group. Compared with the curcumin group, the activity of T24 cells, relative number of autophagosomes, migration rate, p-LKB1/LKB1, p-AMPK/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the combination group of curcumin and metformin were higher, and the apoptosis rate of T24 cells was lower. Compared with the control group, there were no obvious changes in various indicators of T24/DDP cells in the DDP group. Compared with the control group and DDP group, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-glycoprotein (P-gp) protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP and curcumin were lower, and the apoptosis rate of T24/DDP cells was higher; the changes in the above indicators in the combination group of DDP and metformin were opposite to those in the combination group of DDP and curcumin. Compared with the combination group of DDP and curcumin, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-gp protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP, curcumin and metformin were higher, and the apoptosis rate of T24/DDP cells was lower. Conclusion Curcumin can reduce the activity of LKB1-AMPK-LC3 signaling pathway, thereby inhibiting autophagy, proliferation and migration of bladder cancer cells, promoting their apoptosis, and weakening their resistance to DDP.
Humans
;
Cisplatin/pharmacology*
;
Curcumin/pharmacology*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
;
Protein Serine-Threonine Kinases/genetics*
;
AMP-Activated Protein Kinases/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Urinary Bladder Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/drug effects*
;
AMP-Activated Protein Kinase Kinases
;
Microtubule-Associated Proteins/metabolism*
;
Apoptosis/drug effects*
;
Antineoplastic Agents/pharmacology*
;
Metformin/pharmacology*
;
Autophagy/drug effects*
5.Knockdown of BHLHE40 inhibits the proliferation, migration, invasion and PI3K/AKT signaling activity of osteosarcoma cells.
Yang YANG ; Fan YE ; Litao SUN
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):38-44
Objective To investigate the effect of basic helix-loop-helix family member E40 (BHLHE40) on the invasion and migration of osteosarcoma (OS) cells, and to explore the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the biological behavior of OS mediated by BHLHE40, providing a scientific basis for targeted therapy of OS. Methods On the basis of clinical OS samples and OS cell lines, the expression differences of BHLHE40 between OS and adjacent tissues, as well as those between OS cells and normal osteoblast cell lines, were analyzed. BHLHE40 knockdown OS cells were obtained through shRNA transfection. The effects of BHLHE40 on OS cell proliferation, migration, and invasion were examined using CCK-8, EdU staining, wound healing, and Transwell assays. The involvement of the PI3K/AKT signaling pathway was assessed by Western blotting. Further validation was conducted in vivo experiments. Results The expression of BHLHE40 was significantly higher in OS tissues compared to adjacent tissues. In OS cell lines, BHLHE40 protein expression levels were increased compared to normal osteoblasts, and the cell line with the highest BHLHE40 expression was selected for subsequent knockdown experiments. Compared with the knockdown control group, the BHLHE40 knockdown group exhibited reduced cell viability, EdU-positive cell count, colony number, cell migration, and invasion abilities, along with downregulation of phosphorylated PI3K(p-PI3K)/PI3K and p-AKT/AKT protein expression. The aforementioned functions of BHLHE40 were also reproduced in in vivo experiments. Conclusion BHLHE40 is highly expressed in OS tissues, and its knockdown can significantly inhibit OS cell proliferation, migration, and invasion, while reducing PI3K/AKT signaling pathway activity. This suggests that BHLHE40 could serve as a novel therapeutic target for OS.
Osteosarcoma/metabolism*
;
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Signal Transduction/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Cell Line, Tumor
;
Animals
;
Neoplasm Invasiveness
;
Basic Helix-Loop-Helix Transcription Factors/metabolism*
;
Bone Neoplasms/metabolism*
;
Mice
;
Gene Knockdown Techniques
;
Male
;
Female
;
Mice, Nude
6.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
7.Expression Levels of EZH2 and KMT2D in Patients with Diffuse Large B-Cell Lymphoma and Their Relationship with Pathological Features.
Peng PENG ; Wen-Rong ZOU ; Yang-Lu BAI ; Yan GUO ; Ning ZHOU ; Xue-Jia FENG
Journal of Experimental Hematology 2025;33(3):769-776
OBJECTIVE:
To investigate the expression levels of EZH2 and KMT2D in patients with diffuse large B-cell lymphoma (DLBCL) and their relationship with pathological features.
METHODS:
84 patients with DLBCL treated in our hospital from January 2021 to June 2022 were selected as the study subjects, and clinical characteristics such as sex, age and pathological classification of the patients were collected. Immunohistochemistry was used to detecet the expression of KMT2D and EZH2 proteins in tumor tissue cells of the DLBCL patients. The differential expression of KMT2D and EZH2 in subgroups of different sexes, ages, primary sites, clinical stages, Hans subtypes, etc. were compared. The correlation between the expression of KMT2D and EZH2 protein and BCL-6, CD79A was analyzed and validated through the interaction of protein molecular structures. We followed up and recorded the survival status of the patients for 12 months, and analyzed the factors that affect the mortality of DLBCL patients.
RESULTS:
The positive rate of KMT2D and EZH2 was high (over 95%) in DLBCL patients. There was no significant difference in the expression of EZH2 and KMT2D among subgroups of different sexes, ages and stages (P >0.05). However, patients with different levels of BCL-6 and CD79A expression showed differences in EZH2 and KMT2D expression (P < 0.05). EZH2 and KMT2D were positively correlated with BCL-6 (r =0.391, r =0.332) and CD79A (r =0.309, r =0.258), respectively, and there were interactions in the protein molecular structures. The risk factors for mortality in DLBCL patients include male sex (OR =1.106, 95%CI : 1.082-1.130, P < 0.001), stage II (OR =1.778, 95%CI : 1.567-2.016, P < 0.001), stage IV (OR =2.233, 95%CI : 2.021-2.467, P < 0.001), EZH2 positive (OR =2.762, 95%CI : 1.304-5.850, P =0.008), BCL-6 positive (OR =7.309, 95%CI : 1.340-39.859, P =0.022), age≥74 years (OR =3.080, 95%CI : 1.658-5.723, P < 0.001), and 63-73 years old (OR =2.400, 95%CI : 1.564-3.682, P < 0.001), while KMT2D positive (OR =0.180, 95%CI : 0.054-0.608, P =0.006) and 41-51 years old (OR =0.406, 95%CI : 0.274-0.603, P < 0.001) were factors which could reduce the risk of mortality.
CONCLUSION
EZH2 and KMT2D are highly expressed in patients with DLBCL, and they are positively correlated with BCL-6 and CD79A, and affect the prognosis of DLBCL patients.
Humans
;
Enhancer of Zeste Homolog 2 Protein/metabolism*
;
Lymphoma, Large B-Cell, Diffuse/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Neoplasm Proteins/metabolism*
;
Aged
;
Immunohistochemistry
;
Proto-Oncogene Proteins c-bcl-6/metabolism*
;
Prognosis
8.Establishment and Mechanistic Study of Venetoclax-Resistant Cell Lines in Acute Myeloid Leukemia.
Kai-Fan LIU ; Ling-Ji ZENG ; Su-Xia GENG ; Xin HUANG ; Min-Ming LI ; Pei-Long LAI ; Jian-Yu WENG ; Xin DU
Journal of Experimental Hematology 2025;33(4):986-997
OBJECTIVE:
To establish venetoclax-resistant acute myeloid leukemia (AML) cell lines, assess the sensitivity of venetoclax-resistant cell lines to the BCL-2 protein family, and investigate their resistance mechanisms.
METHODS:
CCK-8 method was used to screen AML cell lines (MV4-11, MOLM13, OCI-AML2) that were relatively sensitive to venetoclax. Low concentrations of venetoclax continuously induced drug-resistance development in the cell lines. Changes in cell viability and apoptosis rate before and after resistance development were measured using the CCK-8 method and flow cytometry. BH3 profiling assay was performed to anayze the transform of mitochondrion-dependent apoptosis pathway as well as the sensitivity of resistant cell lines to BCL-2 family proteins and small molecule inhibitors. Real-time fluorescence quantitative PCR (RT-qPCR) was utilized to examine changes in the expression levels of BCL-2 protein family members in both venetoclax-resistant cell lines and multidrug-resistant patients.
RESULTS:
Venetoclax-resistant cell lines of MV4-11, MOLM13, and OCI-AML2 were successfully established, with IC50 values exceeding 10-fold. Under the same concentration of venetoclax, the apoptosis rate of resistant cells decreased significantly (P < 0.05). BH3 profiling assay revealed that the drug-resistant cell lines showed increased sensitivity to many pro-apoptotic proteins (such as BIM,BID and NOXA). RT-qPCR showed significantly upregulated MCL1 and downregulated NOXA1 were detected in drug-resistant cell lines. Expression changes in MCL1 and NOXA1 in venetoclax-resistant patients were consistent with our established drug-resistant cell line results.
CONCLUSION
The venetoclax-resistant AML cell lines were successfully established through continuous induction with low concentrations of venetoclax. The venetoclax resistance resulted in alterations in the mitochondrial apoptosis pathway of the cells and an increased sensitivity of cells to pro-apoptotic proteins BIM, BID, and NOXA, which may be associated with the upregulation of MCL1 expression and downregulation of NOXA1 expression in the drug-resistant cells.
Humans
;
Sulfonamides/pharmacology*
;
Drug Resistance, Neoplasm
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
Leukemia, Myeloid, Acute/pathology*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis
;
Antineoplastic Agents/pharmacology*
9.CircRAD18 Regulates Daunorubicin Resistance in Acute Myeloid Leukemia Cells through MiR-185-5p/HDGF Axis.
Hui SUN ; Fei-Fei YANG ; Hao TANG
Journal of Experimental Hematology 2025;33(5):1318-1326
OBJECTIVE:
To investigate the mechanism of circular RNA RAD18 (CircRAD18 ) in regulating daunorubicin (DNR) resistance in acute myeloid leukemia (AML) cells through the miR-185-5p/hepatoma-derived growth factor ( HDGF) axis.
METHODS:
Real-time fluorescence quantitative PCR and immunoblotting were applied to detect the expression of CircRAD18 , miR-185-5p, and HDGF in human AML cell lines HL-60, U937, and human AML drug-resistant cell line KG1a. KG1a cells were cultured in vitro and randomly divided into control group, DNR group, DNR+negative control group, DNR+CircRAD18 knockdown group, and DNR+CircRAD18 knockdown+miR-185-5p inhibitor group. After transfection, real-time fluorescence quantitative PCR and immunoblotting were applied to detect the expression of CircRAD18 , miR-185-5p, and HDGF of cells, CCK-8 method and Ki-67 immunofluorescence staining were applied to detect cell proliferation, flow cytometry was applied to detect cell apoptosis, and immunoblotting was applied to detect the expression of cell proliferation, apoptosis and drug resistance related proteins in each group. The double luciferase reporter gene experiment was applied to detect the targeting regulation of CircRAD18 on miR-185-5p, and miR-185-5p on HDGF in KG1a cells.
RESULTS:
Compared with HL-60 and U937 cells, the expression of CircRAD18 , and HDGF mRNA and protein in KG1a cells increased (all P <0.05), while miR-185-5p decreased ( P <0.05). Compared with the control group, the CircRAD18 expression, HDGF mRNA and protein expression, cell viability, proliferation rate, and PCNA, Bcl-2, BCRP, and P-gp protein expression in the DNR+CircRAD18 knockdown group decreased (all P <0.05), while miR-185-5p expression, apoptosis rate, and Bax protein expression increased (all P <0.05). There were no obvious changes in all indicators of cells in the DNR group compared with control group ( P >0.05). Compared with the DNR group, the CircRAD18 expression, HDGF mRNA and protein expression, cell viability, proliferation rate, PCNA, Bcl-2, BCRP, and P-gp protein expression in the DNR+CircRAD18 knockdown group decreased (all P < 0.05), while miR-185-5p expression, apoptosis rate, and Bax protein expression increased (all P < 0.05). There were no obvious changes in all indicators of cells in the DNR+negative control group compared with DNR group (P >0.05). Compared with the DNR+CircRAD18 knockdown group, the HDGF mRNA and protein expression, cell viability, proliferation rate, PCNA, Bcl-2, BCRP, and P-gp protein expression in the DNR+CircRAD18 knockdown+miR-185-5p inhibitor group increased (all P < 0.05), while miR-185-5p expression, apoptosis rate, and Bax protein expression decreased (all P < 0.05). CircRAD18 was able to target and down-regulate the expression of miR-185-5p in KG1a cells, and miR-185-5p was able to target and down-regulate the HDGF expression.
CONCLUSION
Knocking down CircRAD18 can reduce HDGF expression by up-regulating miR-185-5p, thereby weakening DNR resistance in AML cells, inhibiting KG1a cell proliferation under DNR treatment, and promoting apoptosis.
Humans
;
MicroRNAs/metabolism*
;
Leukemia, Myeloid, Acute
;
Daunorubicin/pharmacology*
;
Drug Resistance, Neoplasm
;
Apoptosis
;
RNA, Circular
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Cell Proliferation
;
HL-60 Cells
;
Cell Line, Tumor
10.ARID1B Gene Deletion Promotes the Proliferation, Migration and Invasion of NSCLC Cells.
Chinese Journal of Lung Cancer 2025;28(3):165-175
BACKGROUND:
Abnormalities of the switch/sucrose nonfermentable (SWI/SNF) chromatin-remodeling complex are closely related to various cancers, and ARID1B (AT-rich interaction domain 1B) is one of the core subunits of the SWI/SNF complex. Mutations or copy number deletions of the ARID1B gene are associated with impaired DNA damage response and altered chromatin accessibility. However, whether ARID1B deficiency affects the proliferation, migration and invasion abilities of non-small cell lung cancer (NSCLC) cells and its molecular mechanisms remain poorly understood. This study aims to reveal the regulatory role of ARID1B gene deletion on the malignant phenotype of NSCLC cells and its molecular mechanism.
METHODS:
Online databases were used to analyze the relationship between ARID1B and the prognosis of patients with lung cancer, and the expression levels of ARID1B in lung cancer tissues. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat) technology was employed to construct stable ARID1B gene knockout (KO) cell lines. The plate colony formation assay was used to detect cell proliferation, and the Transwell cell migration and invasion assays were used to detect changes in cell migration ability. RNA-Seq was utilized for the expression and enrichment analysis of differentially expressed genes. Western blot (WB) was used to verify the knockout effect of the ARID1B gene and to detect the expression changes of epithelial-mesenchymal transition (EMT) markers and mitogen-activated protein kinases (MAPK) signaling pathway-related proteins. Nude mouse tumor models were constructed and the tumorigenic abilities of control and ARID1B-deficient cells were compared.
RESULTS:
Patients with low ARID1B expression have poor overall survival. ARID1B is differentially expressed in lung cancer and normal tissues, and its expression level being lower in cancer cells. ARID1B-deficient cells had significantly enhanced in vitro proliferation, migration and invasion abilities. In animal experiments, the tumor formation speed of ARID1B gene deficient cells was significantly accelerated. Enrichment analysis of RNA-Seq results revealed that the differentially expressed genes were mainly enriched in MAPK, phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) and other signaling pathways. WB experiments demonstrated that the expressions of E-cadherin, N-cadherin and Vimentin changed in ARID1B gene deficient cells, and the expressions of MAPK and p-MAPK was increased.
CONCLUSIONS
The A549-ARID1B KO and PC9-ARID1B KO cell lines were successfully established. The ARID1B-deficient cell lines demonstrated high migration, invasion and proliferation potential at both in vitro and in vivo biological behavior levels and at the transcriptome sequencing level. The changes in the expression of EMT markers and the activation of the MAPK signaling pathway suggest possible metastasis mechanisms of ARID1B-deficient NSCLC.
Humans
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Lung Neoplasms/metabolism*
;
Animals
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Transcription Factors/metabolism*
;
Neoplasm Invasiveness
;
Mice
;
DNA-Binding Proteins/metabolism*
;
Gene Deletion
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Mice, Nude
;
Gene Expression Regulation, Neoplastic

Result Analysis
Print
Save
E-mail