1.Development of an olfactory epithelial organoid culture system based on small molecule screening.
Han WANG ; Liling DENG ; Xuanhe QIN
Chinese Journal of Biotechnology 2023;39(1):318-336
Olfactory epithelium, which detects and transmits odor signals, is critical for the function of olfactory system. Olfactory epithelium is able to recover spontaneously after injury under normal circumstances, but this ability is dampened in certain diseases or senility, which causes olfactory dysfunction. The olfactory epithelium consists of basal cells, sustentacular cells and olfactory sensory neurons. In order to develop an olfactory epithelial organoid containing multiple olfactory cell types in vitro, we used three-dimensional culture model and small molecules screening. This organoid system consists of horizontal basal-like cells, globose basal-like cells, sustentacular-like cells and olfactory sensory neurons-like cells. Through statistical analysis of clone diameter, immunofluorescence staining and qPCR detection of the expression level of related marker genes. We identified a series of growth factors and small molecule compounds that affected the proliferation, composition and gene expression of the organoids. CHIR-99021, an activator of Wnt signaling pathway, increased the colony formation and proliferation rate of olfactory epithelial organoids and the expression level of marker genes of olfactory sensory neurons-like cells. In addition, each factor in the culture system increased the proportion of c-Kit-positive globose basal-like cell colonies in organoids. Moreover, EGF and vitamin C were both beneficial to the expression of horizontal basal-like cell marker genes in organoids. The established olfactory epithelial organoid system mimicked the process of olfactory epithelial stem cells differentiating into various olfactory epithelial cell types, thus providing a research model for studying olfactory epithelial tissue regeneration, the pathological mechanism of olfactory dysfunction and drug screening for olfactory dysfunction treatment.
Humans
;
Olfactory Mucosa/metabolism*
;
Epithelial Cells
;
Organoids/metabolism*
;
Olfaction Disorders/metabolism*
2.Study on in vitro differentiation of human adenoid-derived mesenchymal stem cells into olfactory sensory neurons.
Fang Fang GUO ; Ben Quan YU ; Yong CHEN ; Jun HE ; Yu GU ; Xin WAN ; Zi An XIAO
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(3):233-239
Objective: To investigate the feasibility of isolation and culture of human adenoid-derived mesenchymal stem cells (aMSCs) in vitro, and to observe the differentiation of aMSCs into olfactory sensory neurons. Methods: Adenoid tissues surgically removed from children with adenoid hypertrophy in the Second Xiangya Hospital of Central South University from September to November of 2020 were collected. The adenoid tissues were digested and isolated by trypsin and then cultured with adhesion method. The expressions of cell surface antigens CD45, CD73 and CD90 on aMSCs of P5 generation were tested by flow cytometry, and the ability of osteogenic and adipogenic induction were used to identify cell differentiation ability. Then, aMSCs were induced into differentiation by retinoic acid (RA), sonic hedgehog (SHH), basic fibroblast growth factor (bFGF), RA+SHH, RA+bFGF, SHH+bFGF and RA+SHH+bFGF, respectively. The morphology of differentiated cells was observed under inverted microscope. The expression of β-tubulin 3, which was the specific marker of sensory neuron, the expressions of growth associated protein-43 (GAP43) and olfactory maker protein (OMP), which were the specific markers of olfactory sensory neuron, were detected by immunofluorescence antibody assay. The expression intensities were compared by Chi-square test of four-grid table data. Results: aMSCs were successively isolated and cultured from human adenoid tissues. P0 cells generation had good adhesion and proliferation performance. P2 cells were basically purified. P5 cells expressed CD73 and CD90 with the purity of 99.3% and 99.75% respectively, without CD45 expression. P5 cells had a good ability of osteogenic differentiation and adipogenic differentiation. Neuron-like morphology and expression of β-tubulin 3 were found in differentiated cells after induced by RA, SHH, or bFGF, respectively. An induction of expression of GAP43 was found in differentiated cells of bFGF+SHH group and RA+SHH+bFGF group, without expression of OMP of each group. The intensity of GAP43 expression of RA+SHH+bFGF group was stronger than that of bFGF+SHH group (χ2=17.48, P<0.005). Conclusions: aMSCs can be cultured from human adenoid tissues, with the stably passaged and good differentiation ability. As a new population of mesenchymal stem cells, aMSCs have the neuroregenerative properties and could differentiate into immature olfactory sensory neurons under the induction of RA+SHH+bFGF in vitro.
Child
;
Humans
;
Hedgehog Proteins
;
Olfactory Receptor Neurons
;
Tubulin
;
Adenoids
;
Osteogenesis
;
Cell Differentiation
3.Changes in percentage of GATA3+ regulatory T cells and their pathogenic roles in allergic rhinitis.
Liu SUN ; Wo Er JIAO ; Yong Kong KONG ; Chang Liang YANG ; Shan XU ; Yue Long QIAO ; Shi Ming CHEN
Journal of Southern Medical University 2023;43(2):280-286
OBJECTIVE:
To investigate the changes in percentage of GATA3+ regulatory T (Treg) cells in patients with allergic rhinitis (AR) and mouse models.
METHODS:
The nasal mucosa specimens were obtained from 6 AR patients and 6 control patients for detection of nasal mucosal inflammation. Peripheral blood mononuclear cells (PBMC) were collected from 12 AP patients and 12 control patients to determine the percentages of Treg cells and GATA3+ Treg cells. In a C57BL/6 mouse model of AR, the AR symptom score, peripheral blood OVA-sIgE level, and nasal mucosal inflammation were assessed, and the spleen of mice was collected for detecting the percentages of Treg cells and GATA3+ Treg cells and the expressions of Th2 cytokines.
RESULTS:
Compared with the control patients, AR patients showed significantly increased eosinophil infiltration and goblet cell proliferation in the nasal mucosa (P < 0.01) and decreased percentages of Treg cells and GATA3+ Treg cells (P < 0.05). The mouse models of AR also had more obvious allergic symptoms, significantly increased OVA-sIgE level in peripheral blood, eosinophil infiltration and goblet cell hyperplasia (P < 0.01), markedly lowered percentages of Treg cells and GATA3+ Treg cells in the spleen (P < 0.01), and increased expressions of IL-4, IL-6 and IL-10 (P < 0.05).
CONCLUSION
The percentage of GATA3+ Treg cells is decreased in AR patients and mouse models. GATA3+ Treg cells possibly participate in Th2 cell immune response, both of which are involved in the occurrence and progression of AR, suggesting the potential of GATA3+ Treg cells as a new therapeutic target for AR.
Animals
;
Mice
;
Cytokines/metabolism*
;
Disease Models, Animal
;
GATA3 Transcription Factor
;
Inflammation
;
Leukocytes, Mononuclear/metabolism*
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Nasal Mucosa/metabolism*
;
Ovalbumin
;
Rhinitis, Allergic/therapy*
;
T-Lymphocytes, Regulatory
;
Th2 Cells/metabolism*
;
Humans
4.Factors affecting nasal drug delivery and design strategies for intranasal drug delivery.
Xiaoyun HU ; Xiao YUE ; Chuanbin WU ; Xuejuan ZHANG
Journal of Zhejiang University. Medical sciences 2023;52(3):328-337
Intranasal drug delivery system is a non-invasive drug delivery route with the advantages of no first-pass effect, rapid effect and brain targeting. It is a feasible alternative to drug delivery via injection, and a potential drug delivery route for the central nervous system. However, the nasal physiological environment is complex, and the nasal delivery system requires "integration of medicine and device". Its delivery efficiency is affected by many factors such as the features and formulations of drug, delivery devices and nasal cavity physiology. Some strategies have been designed to improve the solubility, stability, membrane permeability and nasal retention time of drugs. These include the use of prodrugs, adding enzyme inhibitors and absorption enhancers to preparations, and new drug carriers, which can eventually improve the efficiency of intranasal drug delivery. This article reviews recent publications and describes the above mentioned aspects and design strategies for nasal intranasal drug delivery systems to provide insights for the development of intranasal drug delivery systems.
Administration, Intranasal
;
Drug Delivery Systems
;
Pharmaceutical Preparations
;
Drug Carriers
;
Brain
;
Nasal Cavity/physiology*
;
Nasal Mucosa
5.Research progress and clinical application of allergen nasal provocation test.
Jie HAN ; Meiping LU ; Lei CHENG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(6):415-422
The allergen nasal provocation testing(NPT), in which allergens are applied directly to the nasal mucosa under standard and controlled conditions to provoke the main symptoms of allergic rhinitis(AR), reproduces the response of the upper respiratory tract to natural exposure to allergens under controlled conditions and is the only test currently available to confirm nasal reactivity to allergens. It is invaluable in studying the mechanisms of AR and in assessing the response to novel anti-allergic treatments. The test may play an increasingly important role in clinical practice, especially in the identification of local AR, the diagnosis of occupational AR, the clarification of the composition of allergens, the assessment of the efficacy of AR treatment and the selection of candidates undergoing allergen immunotherapy. This article reviewed the application of NPT in the diagnosis of allergic and non-allergic rhinitis, and also introduces the indications, contraindications, advantages and limitations of NPT in evaluating nasal response.
Humans
;
Allergens
;
Rhinitis/diagnosis*
;
Nasal Provocation Tests
;
Rhinitis, Allergic/diagnosis*
;
Nasal Mucosa
6.Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps.
Shan CHEN ; Jingcai CHEN ; Jianjun CHEN ; Yanjun WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):891-896
Objective:To investigate the expression level and regulatory mechanism of 15-hydroxyprostaglandin dehydrogenase(HPGD) in chronic rhinosinusitis with nasal polyps(CRSwNP). Methods:The expression pattern and level of HPGD in CRSwNP and control was observed using immunofluorescence, and western blot was used for analysis of HPGD expression in nasal polyp tissues. The effect of recombinant human high mobility group box-1(HMGB1) on HPGD expression in primary human nasal epithelial cells was observed, and the potential blocking effect of RAGE neutralizing antibody on HMGB1-induced HPGD expression was investigated. Results:The expression of HPGD was elevated in CRSwNP patients compared to the control, while the protein mainly localized at CD68-positive cells and epithelial cells. Recombinant human HMGB1 stimulated an increase in HPGD expression in primary human nasal mucosal epithelial cells at a time-dependent manner. Additionally, increased phosphorylation levels of MEK and elevated RAGE expression were also observed at 12 hours, but decreased at 24 hours after the incubation of HMGB1. The increase in the expression of HPGD induced by HMGB1 in primary human nasal epithelial cells was partly inhibited with RAGE neutralizing antibody. Conclusion:Elevated HPGD expression is observed in CRSwNP, predominantly in macrophages and epithelial cells. HMGB1 regulates HPGD expression through the RAGE-MEK signaling pathway, potentially providing a new target for future regulation of PGE2levels in CRSwNP.
Humans
;
Antibodies, Neutralizing/metabolism*
;
Chronic Disease
;
HMGB1 Protein/metabolism*
;
Mitogen-Activated Protein Kinase Kinases/metabolism*
;
Nasal Mucosa/metabolism*
;
Nasal Polyps/metabolism*
;
Rhinitis
9.Bioinformatics analysis of nasal epithelial cell gene expression in seasonal and perennial allergic rhinitis.
Li Wei SUN ; Zi Yu LIU ; Ji Chao SHA ; Cui Da MENG ; Dong Dong ZHU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):425-432
Objective: Transcriptome sequencing and bioinformatics analysis were performed on the gene expression of nasal epithelial cells in patients with seasonal allergic rhinitis (AR) and perennial AR, so as to obtain the differences in the gene expression of nasal epithelial cells between seasonal AR and perennial AR. Methods: The human nasal epithelial cell line(HNEpC) was cultured in vitro, treated with 100 μg/ml mugwort or house dust mite (HDM) extracts for 24 hours. Total cell RNA was extracted, and quantitative real-time polymerase chain reaction (qPCR) was used to detect the expression of cytokines, including IL-6, IL-8, IL-33 and thymic stromal lymphopoietin (TSLP). From November 2019 to November 2020, 3 seasonal AR patients, 3 perennial AR patients, and 3 healthy controls who attended the Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University were analyzed. The patients' primary nasal epithelial cells were cultured in vitro, treated with corresponding allergens for 24 hours. Total RNA was extracted for transcriptome sequencing, and the sequencing results were analyzed by bioinformatics. Results: The qPCR results showed that the cytokines IL-6, IL-8, IL-33 and TSLP of HNEpC treated with mugworts extracts and HDM extracts had the same trend of change. After the nasal epithelial cells from patients with seasonal AR and perennial AR were treated with corresponding allergens, there were differences in biological processes and signal pathways between those and control. Gene ontology (GO) enrichment analysis showed that the differentially expressed genes (DEG) in AR patients allergic to mugwort were mainly enriched in the oxidation-reduction process, the negative regulation of apoptosis process, and the cell adhesion; the DEG in AR patients allergic to HDM were mainly enriched in cell adhesion, the negative regulation of cell proliferation and the response to drug. Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway showed that the DEG of AR patients allergic to mugwort were significantly enriched in arachidonic acid metabolism, p53 signaling pathway and transforming growth factor β (TGF-β) signaling pathway, while the DEG of AR patients allergic to HDM were mainly enriched in cells cycle, Fanconi anemia pathway and DNA replication. Gene Set Enrichment Analysis (GSEA) showed that the inflammatory response, TNF-α/NF-κB signaling pathway and IL-2/STAT5 signaling pathway were significantly up-regulated in AR patients allergic to mugwort, indicating the promotion of inflammatory response; and AR patients allergic to HDM had significant down-regulation of G2M, E2F, and MYC, indicating the inhibition of cell proliferation. The protein-protein interaction network showed that TNF and CDK1 were the most interacting proteins in mugwort and HDM allergic AR patients, respectively. Conclusion: Seasonal AR and perennial AR may affect the different biological processes and signal pathways of nasal epithelial cells, leading to differences in the occurrence and development of AR.
Allergens
;
Animals
;
Computational Biology
;
Cytokines/metabolism*
;
Epithelial Cells/metabolism*
;
Gene Expression
;
Humans
;
Interleukin-33/metabolism*
;
Interleukin-6/metabolism*
;
Interleukin-8
;
Nasal Mucosa/metabolism*
;
Plant Extracts/metabolism*
;
Pyroglyphidae
;
RNA/metabolism*
;
Rhinitis, Allergic/metabolism*
;
Rhinitis, Allergic, Perennial
;
Rhinitis, Allergic, Seasonal
;
Seasons
10.Experimental study of dopamine ameliorating the inflammatory damage of olfactory bulb in mice with allergic rhinitis.
Pei Qiang LIU ; Dan Xue QIN ; Hao LYU ; Wen Jun FAN ; Zi Ang GAO ; Ze Zhang TAO ; Yu XU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):442-451
Objective: To investigate the effects of dopamine on olfactory function and inflammatory injury of olfactory bulb in mice with allergic rhinitis (AR). Methods: AR mouse model was established by using ovalbumin (OVA), and the mice were divided into two groups: olfactory dysfunction (OD) group and without OD group through buried food pellet test (BFPT). The OD mice were randomly divided into 2 groups, and OVA combined with dopamine (3, 6, 9 and 12 days, respectively) or OVA combined with an equal amount of PBS (the same treatment time) was administered nasally. The olfactory function of mice was evaluated by BFPT. The number of eosinophils and goblet cells in the nasal mucosa were detected by HE and PAS staining. Western blotting, immunohistochemistry or immunofluorescence were used to detect the expression of olfactory marker protein (OMP) in olfactory epithelium, the important rate-limiting enzyme tyrosine hydroxylase (TH) of dopamine, and the marker proteins glial fibrillary acidic protein (GFAP) and CD11b of glial cell in the olfactory bulb. TUNEL staining was used to detect the damage of the olfactory bulb. SPSS 26.0 software was used for statistical analysis. Results: AR mice with OD had AR pathological characteristics. Compared with AR mice without OD, the expression of OMP in olfactory epithelium of AR mice with OD was reduced (F=26.09, P<0.05), the expression of GFAP and CD11b in the olfactory bulb was increased (F value was 38.95 and 71.71, respectively, both P<0.05), and the expression of TH in the olfactory bulb was decreased (F=77.00, P<0.05). Nasal administration of dopamine could shorten the time of food globule detection in mice to a certain extent, down-regulate the expression of GFAP and CD11b in the olfactory bulb (F value was 6.55 and 46.11, respectively, both P<0.05), and reduce the number of apoptotic cells in the olfactory bulb (F=25.64, P<0.05). But dopamine had no significant effect on the number of eosinophils and goblet cells in nasal mucosa (F value was 36.26 and 19.38, respectively, both P>0.05), and had no significant effect on the expression of OMP in the olfactory epithelium (F=55.27, P>0.05). Conclusion: Dopamine can improve olfactory function in mice with AR to a certain extent, possibly because of inhibiting the activation of glial cells in olfactory bulb and reducing the apoptotic injury of olfactory bulb cells.
Animals
;
Disease Models, Animal
;
Dopamine
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Nasal Mucosa/metabolism*
;
Olfactory Bulb/pathology*
;
Ovalbumin
;
Rhinitis, Allergic/metabolism*

Result Analysis
Print
Save
E-mail